A large scale quantum computer is best constructed using a modular approach. Joining with researchers from the University of Sussex (UK), Google (USA), Aarhus University (Denmark) and RIKEN (Japan), we present the blueprint for an ion trap based scalable quantum computer module which makes it possible to create an arbitrarily large quantum computer architecture powered by long-wavelength radiation.
This quantum computer module controls all operations as a stand-alone unit, is constructed using silicon microfabrication techniques and within reach of current technology. To perform the required quantum computations, the module makes use of long-wavelength-radiation quantum gate technology and relies only on a vacuum environment and global laser and microwave fields. Scaling this microwave quantum computer architecture beyond one module can be done by connecting arbitrarily many identical modules for a large scale architecture.
- Blueprint for a microwave trapped ion quantum computer, B. Lekitsch et al.,Science Advances 3 (2017)
- Interview with Prof. Dr. Chr. Wunderlich
- Media coverage by Nature, BBC, Financial Times