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Abstract
The control of internal and motional quantum degrees of freedom of laser-cooled trapped ions
has been subject to intense theoretical and experimental research for about three decades. In
the realm of quantum information science, the ability to deterministically prepare and measure
quantum states of trapped ions is unprecedented. This expertise may be employed to
investigate physical models conceived to describe systems that are not directly accessible for
experimental investigations. Here, we give an overview of current theoretical proposals and
experiments for such quantum simulations with trapped ions. This includes various spin
models (e.g. the quantum transverse Ising model or a neural network), the Bose–Hubbard
Hamiltonian, the Frenkel–Kontorova model, and quantum fields and relativistic effects.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Atomic ions confined in an electrodynamic trap provide us
with individual quantum systems whose internal and external
degrees of freedom can be controlled to a considerable
degree by the experimenter. A strong motivation for early
experiments with individual trapped ions arose from their
potential use as frequency standards (e.g. Dehmelt (1981)
and references therein). Today, by using trapped ions as
frequency standards unsurpassed accuracy and precision have
been reached (e.g. Rosenband et al (2008) and references
therein), and in addition, trapped ions are used for a wide
range of investigations into fundamental questions of physics,
for instance in the field of quantum information science. This
special issue gives an account of the many facets of research
with trapped ions.

Controlling motional and internal states of trapped ions by
letting them interact with electromagnetic fields, ranging from
uv light to rf radiation, has led to the realization of experiments
that previously (reaching well into the second half of the
twentieth century) were only conceivable, by most physicists,
as Gedankenexperiments. A small (and unsystematic) sample
from such fascinating experiments includes the trapping and
visualization of a single ion (Neuhauser et al 1980), the laser

cooling of a single ion to its motional ground state (Diedrich
et al 1989), the deterministic generation and analysis of
Schrödinger cat and other entangled states of massive particles,
(Monroe et al 1996a, Leibfried et al 2005, Häffner et al 2005,
Blatt and Wineland 2008) or the teleportation of ions (Riebe
et al 2004, Barrett et al 2004).

While building a universal quantum computer still poses
formidable experimental challenges, in particular because of
the low error thresholds required for fault-tolerant computing,
it appears that useful quantum simulations are more amenable
to experimental efforts.

There are two common usages of the term ‘quantum
simulation’: (i) the simulation of static and dynamic properties
of quantum systems (e.g. atoms, molecules, condensed matter
systems) using classical computers and (ii) the simulation of
the properties of one quantum system by means of controlling
and observing another quantum system. Here, we are
concerned with the second type of research.

The purpose of a quantum simulation is to use a well-
understood physical A system to simulate the static properties
and the dynamics of another system B that is difficult or,
for all practical purposes, even impossible to investigate
experimentally (Feynman 1982, 1986, Jane et al 2003).
In order to be able to simulate B by observing A, both
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physical systems need to be described by the same underlying
mathematical model.

In this paper, we give an overview of concrete proposals
for performing experimental quantum simulations with laser-
cooled trapped ions and of experimental work immediately
relevant for using trapped ions as a quantum simulator.

2. Spin models

Interacting spins play an important role in many physical
models in a variety of research fields of physics, for instance
in models that are employed to describe phenomena in
condensed matter physics (e.g. Schollwöck et al (2004) and
references therein). Also, in recent years the connection
between entanglement on the one hand and static and dynamic
properties of many-body systems on the other hand, for
instance, near quantum phase transitions (QPTs) has attracted
much interest (e.g. Osterloh et al (2002), Amico et al (2008),
Plenio and Virmani (2007) and references therein).

Probably the simplest approach to modelling interacting
spins is the classical Ising model (Lenz 1920, Ising 1925)
where the energy of a system of localized particles is given by

E = −J
∑
〈i>j〉

sisj , (1)

and each particle (spin) may be in two possible states indicated
by si = ±1. The summation includes the interaction
between nearest neighbours only, indicated by 〈i > j 〉.
Beyond interacting spins, the Ising model is often used to
approximate systems where the constituents may be in one
of two possible states, describing, for example, the tunnelling
between two potential wells or the occupation of a lattice
site with two types of particles (Brush 1967). Ising already
showed that a phase transition between an ordered state
and a disordered state does not take place in this model
in one dimension at non-zero temperature, whereas in two
dimensions such a phase transition is possible as shown by
Onsager (1944). However, extending the range of interaction
beyond nearest neighbours gives rise to phase transitions even
in one dimension (Gitterman and Halpern 2004).

A more sophisticated model of the interaction between
localized spins (Heisenberg 1928) that, in addition, are
exposed to an external local magnetic field �Bi uses the
Hamiltonian

Hs = −2

h̄

∑
i>j

Jij
�Si · �Sj − gμB

h̄

∑
i

�Si · �Bi. (2)

Here, we assume that all lattice sites are populated by particles
with spin �Si with identical g-factor and eigenvalues of Sz

that are multiples of h̄/2 (μB is the Bohr magneton). No
assumption has yet been made on the physical nature and
range of the spin–spin coupling which is often caused by a
dipole–dipole or exchange interaction. Therefore, it is useful
to explicitly parametrize a possible anisotropy of this coupling
by introducing the constants J

(α)
ij , with α = x, y, z, so that

H(a)
s = −2

h̄

∑
α=x,y,z

∑
i>j

J
(α)
ij S

(α)
i S

(α)
j −

∑
i

�Si · �B ′
i , (3)

where the scaled local fields are defined as �B ′
i ≡ gμB

h̄
�Bi .

When describing physical phenomena that occur in
condensed matter, for example concerning magnetism, this
Hamiltonian is often subject to idealizations with regard to
its dimensionality, the range of interaction, its (an-)isotropy,
the uniformity of coupling constants Jij , the magnitude and
direction of additional (local or global) fields, and regarding
the finite size of a particular system under consideration.

The Hamiltonian of the quantum transverse Ising model is
obtained from H(a)

s for spin-1/2 particles (i.e. �S = (h̄/2)�σ ) by
setting J

(x)
ij = 0 = J

(y)

ij and then including further restrictions.

Specifically, the local fields �Bi are replaced by a global field
�B = (B, 0, 0)T pointing in the x-direction, thus neglecting
inhomogeneities in the physical system to be modelled (Igloi
et al 1993, Platini et al 2007). Additional approximations
often made are that the interaction between spins is restricted
to nearest neighbours and uniform coupling J

(z)
ij = J ∀i, j is

assumed. This then leads to

HT I = −h̄

2
J
∑
〈i>j〉

σ z
i σ z

j − B ′
x

∑
i

σ x
i . (4)

The quantum transverse Ising model is a prominent example
for a spin model (Pfeuty 1970) that has been the starting point
for many theoretical investigations (e.g. Das and Chakrabarti
(2005), Part I and references therein).

2.1. Simulation of spin models with trapped ions

Using two internal states of a trapped ion as an effective spin-
1/2 with the ions interacting via the Coulomb force allows
for engineering spin couplings by letting the ions interact,
in addition, with external dynamic and static fields. Initial
theoretical and experimental work was mainly concerned with
creating effective interactions between two spins to be used
as two-qubit quantum gates (Cirac and Zoller 1995, 2000,
Monroe et al 1995a, Molmer and Sorensen 1999, Milburn
1999, Milburn et al 2000, Sørensen and Mølmer 2000,
Jonathan et al 2000, Jonathan and Plenio 2001, Sasura and
Steane 2003, Schmidt-Kaler et al 2003, Leibfried et al 2003).

2.1.1. Direct spin–spin interaction. In this section we
concentrate on couplings of the type given in equation (3)
that, for example, allow us to study a phase transition between
ordered and disordered phases of an ion crystal as will be
outlined in section 2.2. The question we want to first consider
is: how can such a spin–spin coupling be obtained in an
ion trap and how can it be engineered to simulate a specific
Hamiltonian?

If we consider a laser-cooled Coulomb crystal of singly
charged ions confined in a linear trap such that they arrange
themselves in a 1D string, then the relevant length scale for
the inter-ion distance is

ζ ≡ (e2
/

4πε0mν2
1

)1/3
, (5)

where m is the mass of one singly charged ion, e is the
elementary charge and ν1 is the angular vibrational frequency
of the centre-of-mass (CM) axial mode of the collection of
ions (Steane 1997, James 1998). We have ζ = 1.5 ×
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10−5(Mf 2)−1/3 m with M in atomic mass units and f = ν1/2π

in units of MHz. Thus, ζ typically amounts to a few
micrometres. For a linear ion string, the inter-ion spacing
is δz ≈ ζ2N−0.56 (Schiffer 1993, Dubin 1993) which gives
3.7 μm for 171Yb+ and 9.9 μm for 9Be+ assuming two ions
confined in a potential characterized by f = 1 MHz.

In principle, a direct spin–spin interaction may take place
via a magnetic moment associated with the (pseudo-)spin of
the ions or via an exchange interaction. However, as will be
recapitulated now, the inter-ion spacing renders this interaction
negligible. It is nevertheless instructive to have a look at the
dipole–dipole interaction, since it may help to gain an intuitive
understanding also of the indirect spin–spin coupling treated
in section 2.1.2.

For the moment, for the sake of obtaining an intuitive
picture, we consider two spins with their relative alignment
fixed and exposed to local magnetic fields B

(z)
1,2 such that the

uncoupled Hamiltonian reads as H0 = (h̄/2)
(
ω1σ

(z)
1 + ω2σ

(z)
2

)
(ω1,2 are the angular Larmor precession frequencies). Treating
the magnetic dipole–dipole interaction as a perturbation to first
order, its magnitude is determined by the expectation value

〈s1, s2| VMD |s1, s2〉 = s1s2fθ (δz) ≡ ±h̄�ω, (6)

where s1,2 = ±1 and

VMD = −h̄2

4

μ0

4π

γ1γ2

δz3
(3 cos2(θ) − 1)σ

(z)
1 σ

(z)
2

≡ fθ (δz)σ
(z)
1 σ

(z)
2 . (7)

Here, the gyromagnetic ratio of spins 1 and 2 is denoted by
γ1,2, μ0 indicates the permeability of empty space and θ is
the angle indicating the relative orientation of the two spins.
Equation (6) tells us that the energy of the two-spin systems
depends on the relative orientation between the two spins, that
is, flipping either one of the two spins results in a change of
energy. The physical reason is that the energy of a given spin
depends not only on the imposed local field B

(z)
1,2, but also on

the field generated by the second spin at the location of the
first one, which in turn depends on its orientation (compare
figures 1 and 2).

For two electron spins (γ1,2 ≈ e/me with mass me) and
assuming θ = 0, we find �ω ≈ 2π × 2.6 × 10−20δz−3 Hz
with δz measured in metres. Therefore, for a typical inter-
ion separation, δz = 5 μm, the direct magnetic spin–spin
interaction amounts to �ω ≈ 2π×0.2 mHz and is negligible in
typical ion-trap settings. This estimate is based on a magnetic
dipole–dipole interaction of ions in their ground state. If we
bring the ions to a highly excited Rydberg state, one would
expect an appreciable interaction between their electric dipoles
(Müller et al 2008, Urban et al 2009, Gaetan et al 2009).

In order for the exchange interaction to play a non-
negligible role, an overlap of the wavefunctions describing
the external, motional degrees freedom of neighbouring ions
would be required or, more precisely, the exchange integral∫

r−1
12 [
n(�r1)
n+1(�r2)]

[

∗

n(�r2)

∗
n+1(�r1)

]
would have to have

a non-negligible magnitude. Here, the spatial wavefunction
of ion number n (n + 1) located at position �r1 (�r2) is 
n(�r1)

(
n+1(�r2)) and the integration is carried out over all space.
However, the root mean square extension of the ground-state

Figure 1. An artist’s illustration of the coupling between two spins
via a dipole–dipole interaction. Two classical magnetic moments
γi

�Si fixed in space are exposed to individual external magnetic fields
�Bi (i = 1, 2) that determine their respective energy for a given
orientation (parallel or anti-parallel to �Bi). Spin-2 experiences in the
presence of spin-1, in addition to �B2, an additional field that depends
on the relative orientation between the two spins. Thus, the energy
of spin-2 is shifted depending on the orientation of spin-1 (and vice
versa). The spatial wavefunctions of the two spins are indicated by

i(�ri).

Figure 2. Energy levels of two spins as a function of their
orientation. The quantum numbers si , i = 1, 2, indicate the spin
state. The resonance frequencies of non-interacting spins are ωi

while when they interact these resonances are shifted by �ωi .

wavefunction of a trapped ion is given by �z1 = √
h̄/2mν1 =

7.1 × 10−8 × (Mf )−1/2 m. In the case of a 9Be+ (171Yb+) ion,
one obtains �z1 = 24 nm (5.4 nm) for f = 1 MHz which
typically is three orders of magnitude smaller than the inter-
ion separation δz. Therefore, the exchange interaction can be
neglected, too.

2.1.2. Spin–spin interaction mediated by the Coulomb force.
Thus, a direct spin–spin interaction between trapped ions
will not be sufficiently strong for a useful implementation
of the spin models described above. Instead, we now look
for an interaction that is mediated by some other physical
mechanism.

Physical picture. The applied trapping potential and the
Coulomb forces between the ions determine their equilibrium
positions. Now, by applying a suitable external field, an
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Figure 3. A single ion confined in a potential that is the sum of a
harmonic oscillator and a linear term. The sign of the linear term
depends on the internal spin state (± 1

2 E1) of the ion. Upon flipping
the ion’s spin, its motion can be excited.

additional force is exerted on each ion whose magnitude
and/or direction depend on the orientation of the spin of the
ion and vary spatially (i.e. depend on the exact location of the
ion). If this state-dependent force acts in addition to the trap
and Coulomb forces, then a spin flip of ion 1 changes this
force and, as a consequence, this ion changes its equilibrium
position. Via Coulomb repulsion, this in turn leads to a shift
of the equilibrium position of the neighbouring ion 2 that now
finds itself exposed to a field of different magnitude and thus
changes its internal energy.

This additional field may be a static magnetic field with
spatially varying magnitudes. The direct interaction between
magnetic dipoles (where flipping one spin amounts to a change
in the local magnetic field experienced by another nearby spin)
is replaced by an indirect interaction where the change in the
magnetic field at the location of spin-2 is brought about by a
change of its equilibrium position (caused by the spin flip of
ion 1) in a spatially varying external field.

For a more quantitative description, we consider the force
�F = 〈(�μ · �∇) �B〉 acting on an atomic magnetic moment
�μ = (γ h̄/2)�σ associated with spin (h̄/2)�σ in a magnetic
field �B. Without loss of generality, we restrict the following
discussion to the case where �B = �B0 + bẑ with constant offset
field �B0 and gradient b along the z-axis1 such that the force
Fz = 〈(γ h̄/2)bσ (z)〉 changes sign upon flipping the atomic
spin (〈〉 indicates the expectation value). Using the position-
dependent spin resonance frequency ω = γ bz, the force can
be expressed as a function of the change of ω when moving
the ion along the z-axis:

Fz = (h̄/2)∂zω〈σ (z)〉. (8)

For an ion of mass m confined in a harmonic potential,
characterized by angular frequency ν, this linear force that acts
in addition to the trapping potential and Coulomb force shifts
the equilibrium position of the ion, upon flipping its spin,
by an amount dz = ∓Fz/(mν2) from its initial equilibrium
position (compare figure 3). Thus, in a classical picture,
the ion finds itself on the slope of a harmonic oscillator
potential, instead of at the potential minimum, after its spin was
flipped. Consequently, it will start to oscillate around the new

1 Such a field may be approximately realized, even though it does not fulfil
�∇ · �B = 0, for example, on the axis of rotational symmetry of a quadrupole
field sufficiently far from the point of inflection symmetry.

Figure 4. Sketch of two ions confined in a harmonic potential with
a superimposed spatially varying magnetic field �B to illustrate
spin–spin coupling mediated by Coulomb repulsion. When we flip
the spin of ion 1, the state-dependent force acting on it will change
sign and, thus, its equilibrium position will change (1 → 1′).
Through Coulomb interaction the second ion, too, will change its
equilibrium position (2 → 2′), and, since it moves in a field
gradient, consequently will change its internal resonance frequency
from ω2 to ω′

2.

equilibrium position. In this way the ion’s internal dynamics
and its motional degrees of freedom can be coupled, even
if the radiation causing the spin flip does not impart enough
linear momentum to excite the ion’s motion. This coupling,
quantum mechanically described by an effective Lamb–Dicke
parameter ηeff = dz/�z (Mintert and Wunderlich 2001, 2003,
Wunderlich 2002, Wunderlich and Balzer 2003), has been
recently observed experimentally (Johanning et al 2009).

In order to see how the desired J -coupling (see
equation (3)) arises, we consider how an ion’s shift of its
equilibrium position affects its internal energy. This change
of its internal energy is given by

h̄J = −Fzdz = −F 2
z

/
(mν2) ∝ (b/ν)2. (9)

As a consequence of one ion’s shift of equilibrium position,
through Coulomb interaction, the position and energy of
neighbouring ions are shifted, too, giving us the desired
(indirect) spin–spin interaction (compare figure 4).

Calculation of spin–spin coupling. After having introduced
this general physical mechanism that may be used to induce
an effective spin–spin interaction, we will now briefly outline
how this may be employed to engineer a variety of interactions
between a collection of trapped ions. We consider the internal
energies of N ions all of which experience a shift of their
internal resonance frequency that, for now, depends on their
axial position denoted by z, only:

HI = −h̄

2

N∑
n=1

ωnσ
(n)
z − h̄

2

N∑
n=1

∂zωnqnσ
(n)
z (10)

Here, qn is the deviation of ion n from its equilibrium position
z(0)
n ,

ωn ≡ ω|
z
(0)
n

, ∂zωn ≡ ∂zω|
z
(0)
n

, (11)

and the expansion of ωn has been included up to first order2.
The external (motional) degrees of freedom of N ions are

determined by the applied trapping potential and their mutual

2 We assume a constant field gradient, that is, second-order and higher order
derivatives of the field vanish. However, expression (10) is still valid even if
these derivatives are different from zero as long as the gradient does not vary
appreciably over the extent �z of an ion’s spatial wavefunction.
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Coulomb repulsion. Expanding the total potential up to second
order gives

V (harm) = m

2

3∑
α=1

N∑
i,j=1

Aαα,ij qα,iqα,j , (12)

where the three spatial degrees of freedom α = x, y, z are
uncoupled (James 1998). The Hessian matrices Aαα,ij that
characterize the potential experienced by the ions are real
valued and symmetric in i and j and are transformed into
diagonal matrices Dα via Dα = S−1

α A(2)
α Sα with eigenvectors

�Q.
In terms of the normal coordinates, we obtain the

following Hamiltonian describing 3N uncoupled harmonic
oscillators (James 1998):

HE =
3∑

α=1

[
1

2m

N∑
n=1

P 2
α,n +

m

2

N∑
n=1

ν2
α,nQ

2
α,n

]
, (13)

where να,n is the angular frequency of the normal vibrational
mode n in direction α = x, y, z and the relation between the
normal coordinates Qα,n and the local coordinates qα,n is �Qα ≡
(Qα,1, . . . ,Qα,N) = S−1

α �qα with �qα = (qα,1, . . . , qα,N );
furthermore, Pα,n ≡ mQ̇α,n.

The total Hamiltonian includes internal and motional parts
H = HI + H

(z)
E , where, for now, we restrict our considerations

to the spatial z-direction where a field gradient is present. If a
magnetic field gradient was present also in the radial direction
(which is the case, e.g., for a quadrupole field close to its point
of symmetry), then the radial vibrational modes would also
contribute to the J -coupling. However, this contribution is
usually small, since in order to maintain a linear ion string,
the angular frequencies νx,1 and νy,1, characterizing the radial
trapping potential, are usually chosen much larger than νz,1.
Taking into account that the J -coupling is proportional to
the inverse square of the trap frequency (taking equation (9)
as a guideline), we neglect the contribution from transverse
vibrational modes for now. In Porras and Cirac (2004a) and
Deng et al (2005), transverse modes are explicitly considered
(see below).

After expressing the local coordinates qn in equation (10)
by the normal coordinates, qn = ∑N

l=1 SnlQl , noting that
Ql = �zl

(
a
†
l + al

)
, Pl = imνl�zl

(
a
†
l − al

)
and performing a

suitable unitary transformation of H, H̃ = U †HU , with

U ≡ exp

(
− i

h̄

N∑
n,l=1

�zlεnlσ
(n)
z Pl

)
, (14)

we obtain (Wunderlich 2002)

H̃ = −h̄

2

N∑
n=1

ωnσ
(n)
z + h̄

N∑
n=1

νna
†
nan − h̄

2

N∑
i,j=1
i<j

Jij lσ
(i)
z σ (j)

z ,

(15)

where the vibrational motion and the internal states are
now decoupled (a†

n and an are respectively the creation and
annihilation operators of vibrational mode n). The spin–spin
coupling constants are given by

Jij ≡
N∑

n=1

νnεinεjn, (16)

where the dimensionless constants

εin ≡ �zn∂zωi

νn

Sin (17)

have been introduced. The numerator of the fraction on
the right-hand-side of equation (17) gives the change of the
internal energy (or frequency) that ion number i undergoes
when its position is shifted by an amount equal to the
extension of the ground-state wavefunction, �zn =

√
h̄

2mνn
,

of vibrational mode n. This is set in relation to the energy
(frequency) of a phonon of mode n. The matrix element Sin

gives the scaled deviation of ion i from its equilibrium position
when vibrational mode n is excited. Thus, εin tells us how
strongly ion number i couples to vibrational mode n when
its spin is being flipped. The sum in equation (16) extends
over all vibrational modes, since the local deviation, qn, of ion
i from its equilibrium position potentially (if Sin is different
from zero) excites all vibrational modes of the ion string.

Noting that νn ∝ ν1 and Fz,i ∝ ∂zωi and plugging
the expression for �z into equation (17), we find from
equation (16) that

Jij ∝ Fz,iFz,j

ν2
1

∝
(

b

ν1

)2

(18)

in agreement with the result (9) that was found from a simple
model based on classical considerations (here, ν1 is the angular
frequency of the centre-of-mass mode of N ions). One obtains
the proportionality between the second and third terms in
relation (18), if the state-dependent force is caused by a
constant magnetic field gradient (that gives rise to a linear
Zeeman shift of the spin states of ions i and j ).

This spin–spin coupling is only weakly sensitive to
thermal excitation of the ion string. Thus, usually simple
Doppler cooling will be sufficient to avoid unwanted thermal
effects on the coupling constants Jij (Loewen and Wunderlich
2004). Detailed calculations on this aspect will be published
elsewhere.

In Ospelkaus et al (2008), it is shown how an oscillating
magnetic field generated in a micro-structured surface trap
may be used to induce spin coupling between ions and how
this could be employed to carry out quantum gates.

Spin–spin interaction created by an optical force. The J -
coupling described above may also be created by a state-
dependent optical force (instead of the magnetic force assumed
above) induced by an off-resonant standing laser wave (Porras
and Cirac 2004a, Deng et al 2005). Applying state-dependent
forces (e.g. optical or magnetic forces) along different spatial
directions, combined with various trapping conditions, a
variety of different coupling Hamiltonians of the general form

H(ion)
s = −1

2

∑
α=x,y,z

∑
i>j

J
(α)
ij σ α

i σ α
j −

∑
i

σ α
i

�Bα′
i (19)

may be realized (Porras and Cirac 2004a, Deng et al 2005).
In particular, in Deng et al (2005) it is shown how

state-dependent forces that act in the radial direction of a
1D ion string may be exploited to simulate a transverse
quantum Ising model and an XY model, either with Coulomb
crystals confined by a global potential or with linear arrays of
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microtraps where each ion is confined in its own, externally
controlled potential well. It is demonstrated (by means of
numerical and analytical calculations) under which conditions
quantum phase transitions should be observable with 1D
strings of trapped ions, and what the expected characteristic
features of these transitions are, as compared to the usual Ising
and XY models where only nearest-neighbour interaction is
considered.

2.1.3. Engineering the spin–spin coupling. A
straightforward way to apply a magnetic gradient that
induces the long-range J -coupling described above in a
linear Coulomb crystal is the use of current-carrying coils
in an anti-Helmholtz-type arrangement, mounted such that
their axis of rotational symmetry coincides with the trap z-
axis. The field generated by these coils is easily calculated
analytically and gradients up to several tens of T m−1 are
attainable with coils with a diameter of typically 1 mm. Some
examples for possible configurations and computed examples
for J -coupling constants are presented in Wunderlich and
Balzer (2003), Wunderlich et al (2005) and Wunderlich and
Wunderlich (2009). Such coils may also be integrated into
micro-structured ion traps that are currently being developed.
Here, larger gradients are realistic (several hundreds of
T m−1) (Brüser, submitted). When using current-carrying
structures for generating magnetic fields, the currents, and
thus the J -coupling, can be turned on and off as required;
however, the stability of the magnetic field needs attention to
avoid dephasing of spins. Alternatively, permanent magnets
may be used (Johanning et al 2009).

Global trap potential. If the ions are confined in one common
trapping potential, then the strength of the J -coupling may
be controlled globally, that is, all coupling constants may be
varied together by adjusting the gradient b and/or the secular
trap frequency ν1. In a linear Paul trap the trap frequency
along the z-axis of a linear trap is adjustable by applying a
suitable voltage to the end cap electrodes, while the radial
trapping frequency can be adjusted by varying the amplitude
of the applied rf trapping field. If the gradient b is generated
by electrical currents, then these currents can be varied, and
turning the magnetic field on and off using a desired envelope
allows for simultaneous switching of all coupling constants.
If permanent magnets are used, and their position is fixed
along the z-axis (typically generating a quadrupole field), the
ions may be moved collectively along the z-axis to change the
gradient they experience. Moving the ions in a linear Paul trap
is achieved by applying suitable voltages to the electrodes that
are responsible for the axial confinement. Even an always-on
interaction (that arises, for instance, when using permanent
magnets to generate a field gradient) used in conjunction with
coherent manipulation of individual spins may be employed
such that prescribed entangled states can be generated in a
time-optimal way (Fisher, private communication) for the axial
confinement.

Locally variable trap potential. The advent of micro-
structured traps brings with it the possibility of attaining

control over local trapping potentials and thus of engineering
the J -coupling locally. For example, employing a linear
Paul trap with dc electrodes that are segmented such that
individual electrodes have an axial extension of the order of the
inter-ion separation allows for shaping the local electrostatic
potential such that long-range coupling is strongly suppressed
and essentially only uniform nearest-neighbour coupling exists
(Hugh and Twamley 2005).

Furthermore, micro-structured traps with segmented
electrodes allow for detailed local sculpting of J -coupling
constants. This can be useful to generate effective time
evolution operators making it possible to reach a desired
entangled state in a single time evolution step without the need
for refocusing. Examples of how to generate cluster states in
this way are given in Wunderlich and Wunderlich (2009).

A possible drawback of the use of small electrodes is
that this usually implies an equally small distance between
ions and nearby surfaces (i.e. typically of order 10 μm) which
leads to high heating rates of the ions’ secular motion and
thus limits the useful time available for coherent dynamics
(Turchette et al 2000). Using ion traps embedded in a
cryogenic environment considerably reduces this heating rate
(Deslauriers et al 2006, Labaziewicz et al 2008) and, therefore,
may provide a feasible approach to using small electrode
structures. A micro-fabricated linear surface trap cooled to
4 K that includes current-carrying structures for generating a
magnetic field gradient was recently demonstrated (Wang et al
2008). The magnetic gradient was used to address individual
88Sr+ ions in frequency space on an optical transition between
Zeeman states of the electronic ground state 5S1/2 and the
metastable state 4D5/2, respectively.

Segmented ion traps also allow for transporting ions
between different trap locations (Wineland et al 1998,
Kielpinski et al 2002, Rowe et al 2002, Home and Steane
2006, Hensinger et al 2006, Schulz et al 2006, Reichle
et al 2006, Hucul et al 2008, Huber et al 2008). For moving
ions, the required electrode structures may be considerably
larger, typically of order 100 μm, thus helping to reduce
unwanted heating. The transport of ions over small distances in
segmented ion traps gives a further handle to engineer effective
couplings by letting only a subset of ions interact at a time in a
prescribed way. This could be used, for example, to generate
two-dimensional cluster states using a one-dimensional linear
Coulomb crystal (Wunderlich and Wunderlich 2009).

A possible architecture for a two-dimensional surface trap
array exploiting a magnetic field-gradient-induced spin–spin
coupling as described above was proposed in Chiaverini and
Lybarger (2008). In Clark et al (2008), confinement of 88Sr+

ions in a 2D ion-trap array with individual sites spaced apart
by about 1.6 mm is reported. Even though a trap array with
such a large inter-ion spacing does not allow for a useful spin
coupling between the ions, it is nevertheless useful as a proof-
of-principle and makes possible the investigation of the scaling
behaviour of this trap array. It turns out that scaling down of
the layered rf lattice trap alone is unlikely to be a promising
route to achieve useful J -coupling. It appears that further
modifications of this trap design are useful to ensure low
enough secular frequencies for sufficiently strong J -coupling
(compare equation (18)).
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Recently, two-dimensional and linear arrays of Penning
traps that confine individual electrons have been proposed as
a promising physical system for quantum computation and
quantum simulations. Here, the physical origin of the J -
coupling is again a force that depends on an electron’s spin
state and is caused by a magnetic field gradient and, as in
ion traps, the Coulomb force between electrons mediates the
spin–spin coupling (Stahl et al 2005, Ciaramicoli et al 2005,
2007, 2008). Thus, various couplings as in equation (3) with
variable ranges could be realized with trapped electrons and
used, for instance, to investigate quantum phase transitions.

2.1.4. Simulating an effective transverse field. An effective
transverse magnetic field can be simulated by driving
transitions between the spin states of ion i employing a
radio frequency or optical field resonant with this ion’s qubit
transition3:

Ht = −h̄�R cos(ω(i)t + φ′)σ (i)
x (20)

= −h̄

2
�R
(
σ (i)

+ + σ
(i)
−
)
(ei(ω(i)t+φ′) + e−i(ω(i)t+φ′)). (21)

Here, �R is the Rabi frequency that for a linearly polarized rf
field Bx cos(ωxt +φ′) reads as �R = γBx/2 and the resonance
condition is ωx = ω(i).

First transforming Ht by U, as was done above for
the Hamiltonian H (equations (14) and (16)), then carrying
out a transformation into an interaction picture with respect
to − h̄

2

∑N
n=1 ωnσ

(n)
z + h̄

∑N
n=1 νna

†
nan (Wunderlich 2002),

expanding the resulting Hamiltonian up to first order in a† and
a, neglecting terms that contain εin

4 and applying the rotating
wave approximation, one obtains for spin i

H̃
(i)
t = −h̄

2
�R
(
σ (i)

x cos φ − σ (i)
y sin φ

)
(22)

when the rf field or optical field is on resonance. Allowing
for a detuning ωrf − ω(i) between the applied field and the
spin-flip resonance frequency introduces a term proportional
to (ωrf −ω(i))σ (z) on the rhs of equation (22). Thus, by driving
spin transitions of individual ions, a variety of additional local
effective magnetic fields �Bn

′ ∝ (cos φn,− sin φn, (ωrf−ω(n))T

in Hamiltonian (3) may be simulated. In particular, by
choosing the phase φ′ of the rf field such that φ = 0
and fulfilling the resonance condition for all ions, a global
transverse field B ′

x for the transverse Ising model (4) is
implemented.

2.1.5. Spin-boson model. The spin-boson model ((Leggett
et al 1987, Weiss 1999) and references therein) is the starting
point for the modelling of many theoretical investigations, for
instance the decoherence of a variety of physical systems.
It describes the dynamics of a spin-1/2 coupled to a bath
of harmonic oscillators that represent the spin’s environment.
Thus, the spin-boson Hamiltonian contains a term proportional
to σz (describing the spin’s energy), a term proportional to

3 Optical fields may be used to drive transitions not only in the optical range,
but also in the rf range by applying a two-photon Raman excitation.
4 In Deng et al (2005), the effects of residual spin–phonon coupling caused
by the effective transverse field are calculated.

σx (describing spin flips), a term describing the harmonic
oscillators, h̄

∑
l νl

(
a
†
l al + 1/2

)
, and finally a term coupling

the spin to the oscillators

h̄

2
σz

∑
l

ClQl, (23)

where Ql is the position coordinate of the lth harmonic
oscillator while Cl describes the coupling strength between
this oscillator and the spin. We note that all these ingredients
are already present in the formulae presented above: Picking
out a particular ion i, equation (10) may be rewritten as

Hi
I = −h̄

2
ωiσ

(i)
z − h̄

2
σ (i)

z

N∑
n=1

∂zωiqn

= −h̄

2
ωiσ

(i)
z − h̄

2
σ (i)

z

N∑
l=1

∂zωi

(
N∑

n=1

Snl

)
Ql (24)

and we can set Cl = ∂zωi

(∑N
n=1 Snl

)
to obtain in equation (23)

the coupling between spin i and the harmonic oscillators
represented by the collective vibrational modes of a string
of N ions. The term proportional to σx required for the spin-
boson model is obtained by driving transitions between the
two spin orientations (see above, equation (22)).

Now the question arises how to physically single out a
particular spin i from the sum over all spins in the second
term of HI (equation (10)) such that we are left with Hi

I in
equation (24). This could be done by exerting a state-
dependent force only on ion i as is shown in Porras et al
(2008). Porras et al detailed how laser beam(s) focussed
onto one particular ion gave rise to optical forces that induce
the required coupling. Furthermore, it is shown how phonon
baths characterized by a variety of spectral densities may be
simulated and how effects caused by the finite size of the ion
crystal may be observed.

2.2. Phase transition

2.2.1. Quantum transverse Ising model. The quantum
transverse Ising model (TIM, equation (4)) already displays
a phase transition in one dimension (Sachdev 1999), even at
zero temperature, between an ordered state and a disordered
state upon varying B ′

x/J . Milburn (1999) and Milburn et al
(2000) proposed an implementation of a unitary map closely
related to the TIM using Raman laser pulses. In Porras and
Cirac (2004a), it is proposed how to observe this QPT with
trapped ions interacting with a standing laser wave that creates
a long-ranged spin coupling as outlined above (section 2.1.2).
Barjaktarevic et al (2005) proposed to implement a unitary
map that displays a QPT belonging to the same universality
class as the transverse Ising model.

In order to get a qualitative picture of such a phase
transition, we first consider the collection of spins described by
HT I (equation (4)) in the limit where the effective transverse
field, B ′

x , assumes a finite value, but the mutual coupling J

between spins vanishes, B ′
x �= 0 = J , such that, at zero

temperature, all spins are oriented along the x-direction and
the ground state |0〉 = ∏

i |→〉i = ∏
i (|↑〉i + |↓〉i ) of the

system is a product of eigenstates of σx
i . Consequently,
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〈0| σ z
i σ z

j |0〉 = δij , that is, the orientation of different spins
with respect to the the z-axis is uncorrelated. On the other
hand, if the spin–spin coupling does not vanish, B ′

x � |J | > 0,
the spins will acquire a tendency to align along the z-axis.
Thus, the ground state of the system will start to exhibit
non-vanishing, but short-ranged, correlations between spins
located at sites ri and rj , respectively, with a characteristic
length scale ξ (Sachdev 1999):

〈0| σ z
i σ z

j |0〉 ∝ e−|ri−rj |/ξ . (25)

Here, |0〉 is the system’s ground state when B ′
x � |J | �= 0.

Now, we turn to the limit B ′
x � J > 0. If B ′

x vanishes
completely, then an infinite system of spins possesses two
degenerate ferromagnetic ground states where all spins are
either parallel or anti-parallel to the z-axis and the total
magnetization of the system is M0. Turning on a small field
B ′

x � J pointing in the x-direction will tend to reorient some
of the spins along the x-direction (classically, their magnetic
moments will start to precess around the x-direction, thus
flipping spins between the two possible z-orientations). The
ground state of the system, |0〉, is still close to the B ′

x = 0
case and is obtained from a perturbative expansion in the
small parameter B ′

x/J . One finds 〈0| σ z
i |0〉 = M/M0 where

M < M0 is now the spontaneous magnetization of the system.
Again calculating the correlation of the orientation of different
spins in the z-direction for this ground state gives (Sachdev
1999)

lim
|ri−rj |→∞

〈0| σ z
i σ z

j |0〉 =
(

M

M0

)2

. (26)

Expressions (25) and (26) for the spin correlation are
incompatible in the sense that a continuous variation of B ′

x/J

between the two limiting cases considered above does not
allow for an analytical connection between the two expressions
on the right-hand sides of equations (25) and (26). Thus,
there must exist a critical value of B ′

x/J where the correlation
changes between these two expressions. This is the case
even at zero temperature being indicative for a quantum phase
transition.

An experimental realization of the proposal by Porras and
Cirac (2004a) with two trapped and laser-cooled 25Mg+ ions
was recently reported by Friedenauer et al (2008). Here, the
coupling J between spins is induced by a state-dependent
ac-Stark shift caused by a ‘walking’ standing wave. Two
hyperfine states of the electronic ground state of each 25Mg+

ion served as an effective spin-1/2 with eigenstates |↓〉 and
|↑〉. In brief, the experimental procedure is as follows.
Optical pumping is employed to first initialize the two ions
in state |↓,↓〉. Resonantly driving the transition between the
two hyperfine states with rf radiation simulates an effective
transverse field B ′

x (section 2.1.4) and allows for preparation of
the initial paramagnetic state |→,→〉 (both spins are oriented
along the effective B ′

x field). Then, the J -coupling between
the two spins is ramped up adiabatically from zero to a desired
value such that the ratio J/B ′

x � 5.2. For J � B ′
x one expects

that the two spins are found in a ferromagnetic state, that is,
aligned along the z-axis. In general, the new ground state
will be a superposition of the states |↓,↓〉 and |↑,↑〉 which

is indeed found experimentally. In a further experiment the
two spins were prepared initially anti-parallel to the effective
B ′

x field, an excited paramagnetic state. Turning on the
spin–spin coupling adiabatically then resulted in an excited
state in the presence of strong J -coupling (J/B ′

x � 1): the
anti-ferromagnetic state |↑,↓〉 + |↓,↑〉. In both cases, the
entanglement of the final state was proven experimentally.

2.2.2. Scalar fields. Classical phase transitions between
spatial configurations of ions confined in a linear or ring-
shaped trap have been investigated experimentally and
theoretically (Waki et al 1992, Raizen et al 1992, Birkl et al
1992, Dubin 1993, Schiffer 1993, Drewsen et al 1998,
Kjærgaard and Drewsen 2003, Morigi and Fishman 2004a,
2004b, Fishman et al 2008). Retzker et al (2008) suggested
to explore a phase transition between a linear and a zigzag
configuration (Fishman et al 2008) in the quantum regime,
that is, with the ion string cooled close to its vibrational
ground state. The ion-trap parameters are chosen such that
a linear Coulomb crystal forms (i.e. the confinement in the
axial direction is weaker than in the radial direction) and, in
addition, νy,1 � νx,1 such that one radial degree of freedom
is essentially frozen out after laser cooling, but the other may
be employed for quantum simulations. Linear Paul traps as
well as Penning traps where the ions are confined on the axis
of rotational symmetry (Powell et al 2002) are well suited for
this purpose.

For ν1,x below a critical value νc
1,x , a zigzag configuration

of the ions will form with two degenerate states. It is shown in
Retzker et al (2008) that coherent tunnelling between these
two states may be observed and used for interferometry.
Furthermore, by adjusting ν1,x around νc

1,x the parameters
of a Hamiltonian describing the ions’ motional excitation
along the x-direction may be determined. This Hamiltonian
describes at the same time a nonlinear scalar field and by
adjusting ν1,x the effective mass of this field may be varied, in
particular in the vicinity of a phase transition. An attractive
feature of this proposal is that global adjustment of the radial
trapping frequency ν1,x is sufficient and no local control over
the trapping potential is needed.

2.3. Neural network

In Pons et al (2007) and Braungardt et al (2007), it was shown
that a linear Coulomb crystal of laser-cooled trapped ions may
be used to implement a neural network (NN)—according to the
Hopfield model (Hopfield 1982)—allowing for robust storage
of classical information and, furthermore, that such a NN may
be employed for error-resistant quantum computation. We will
first briefly introduce some features of the Hopfield model (see,
e.g., Rojas (1996), chapter 13 and references therein) and then
outline how some features may be realized with trapped ions.

A neural network according to the Hopfield model consists
of N nodes (corresponding to neurons) that are all mutually
interconnected and we indicate the (synaptic) strength of the
connection between node i and node j by Jij . This connection
is symmetric, that is, Jij = Jji and the nodes do not feed
back to themselves, Jii = 0. Below, we will see what
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Figure 5. Illustration of a neural network that consists of four nodes
according to Hopfield (1982). Each node may exist in one out of
two states indicated by si = ±1, i = 1, 2, 3, 4. The nodes are all
interconnected with Jij = Jji . Here, the network forms a pattern
�ξ = (−1, +1, +1, −1)T . (Note that the number p of patterns that can
be stored by a Hopfield network is about p = 0.14N , where N is the
number of nodes.)

exactly the meaning of the coupling strengths Jij is. Each
node can assume one of two possible states which we label
by si = ±1 (compare figure 5). When modelling neurons,
this would indicate whether the neuron is ‘firing’ (a sudden
change of a biologically relevant potential difference) or in
a quiescent state at a given time. Furthermore each node is
characterized by a threshold hi that, in addition to the couplings
Jij , influences its response to the input from other nodes.

A characteristic feature of a Hopfield NN is that it can
store information distributed over all nodes. Thus, it is robust
against errors in individual nodes or even the loss of some
nodes and against thermal noise. The dynamics of the NN,
being determined by the strengths of interactions between all
nodes, brings the system back to one out of a selection of
particular states (that we call patterns) once this state was
disturbed. This feature may be taken advantage of for pattern
recognition. When the NN is presented with some input state,
which is done by initializing all nodes with a given value,
then the NN evolves into the pattern that it was trained to
recognize that is closest to this initial state. So how does the
NN dynamically evolve?

We start at time t with an initial global state of the NN
labelled by the N-component vector �s where each local node is
characterized by si . Then the state of each node at time t + δt

is determined by the sign of the activation function A at time
t + δt :

si(t + δt) = sgn(A(t + δt)), (27)

where

A(t + δt) =
∑
j �=i

Jij sj (t) + hi. (28)

This means that at time t + δt , node i will be firing (si = +1)

or in a quiescent state (si = −1) depending on the state of all
other nodes at time t, weighted with the strength Jij , and the
individual threshold hi . One of the two following alternative
model assumptions is usually made: the updating of node i
may either occur sequentially, one node after the other, or in
parallel all at the same time.

We now define the cost function

HH(�s) = −1

2

∑
i,j (i �=j)

Jij sisj −
∑

i

hisi (29)

and it can be shown (Rojas 1996) that an evolution of
the network according to the dynamical rule for sequential
updating (27) (together with definition (28)) leads to a
monotonic decrease of HH

5. This means that flipping spins
(in agreement with the rules) drives the system towards local
or global minima in the ‘landscape’ defined by HH over the
space of �s.

We immediately realize that the expression defining HH is
formally equivalent to the spin Hamiltonian Hs (equation (3))
considering the case of spin-1/2 particles with J

(x)
ij = 0 =

J
(y)

ij . As noted at the beginning of the section on spin models,
further simplifications of Hs, namely uniform J -coupling, only
nearest-neighbour interaction, and no transverse field lead to
the Ising model (equation (1)). When considering the Ising
model, one usually assumes that all coupling constants are
positive or all are negative and thus arrives at a limited set of
minima (e.g. for J > 0, all spins are all either up or down).
However, here the couplings Jij are not restricted to being
all positive or all negative, thus allowing for a rich ‘energy
landscape’ with many minima.

Our goal is to ‘teach’ the NN a specific pattern, �ξ, ξi = ±1
towards which the NN is supposed to relax, if it is displaced
from this pattern or if presented with a similar input pattern.
In other words, this pattern must correspond to a minimum of
HH. Where exactly this minimum occurs, that is, for which
particular configuration �s, is determined by the choice of the
interaction strengths Jij . Therefore, if one wants the NN
to ‘remember’ a particular pattern �ξ (i.e. create a minimum of
HH for a specific arrangement �ξ of the nodes), the J -couplings
need to be adjusted accordingly. At first sight (and probably
still at second), it is not obvious how a set of J -couplings may
be found that creates a minimum of HH for a desired pattern
and thus makes the NN evolve towards this pattern. It turns
out that using Hebb’s rule (Hebb 1949, Mezard et al 1987) to
determine the values of the couplings Jij gives just the right
set of J -couplings.

In order to memorize a pattern �ξ , each Jij is modified
according to Hebb’s rule of learning, such that

J new
ij = λJ old

ij + εξiξj . (30)

When we start with an ‘empty’ memory, then J old
ij = 0. In

the original Hopfield model, λ = 1 = ε; another choice is
ε = 1/N . With the set of interconnections, Jij determined
by equation (30) the NN, upon turning on its dynamics, will
eventually end up in the memorized pattern �ξ . If the NN is
supposed to memorize p patterns, �ξμ with μ = 1, 2, 3, . . . , p

instead of just a single pattern, then the learning rule is
modified, namely

Jij = ε

p∑
μ=1

ξ
μ

i ξ
μ

j . (31)

Here, we start with an empty memory, i.e. initially Jij =
0 ∀i, j . After fixing the strength of the pairwise J -coupling in
this way, the patterns are ‘memorized’ by the NN, and, when
presented with some initial state, the NN will evolve towards
a minimum of HH associated with one of these patterns. The

5 In this brief account, we consider the system at zero temperature only.
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upper limit for the number of patterns that such a network may
faithfully recall via its associative memory is about 0.14N

(Rojas 1996).
Now, it will be discussed how a linear Coulomb crystal

of trapped ions may be employed to realize a Hopfield-
type NN. We have already noted the similarity between HH

(equation (29)) on one hand and the two spin Hamiltonians
H(a)

s (equation (3)) and H(ion)
s (equation (19)) for J

(x)
ij =

0 = J
(y)

ij on the other. A further similarity can be seen
between equation (31), defining the synaptic strengths in the
Hopfield model, and equation (16), where the ion spin coupling
constants are given. We rewrite equation (16) using expression
(17) assuming a constant field gradient and obtain

J
(ion)
ij = h̄

2m
∂zω

N∑
n=1

1

ν2
n

SinSjn, (32)

where the matrix elements Sin may assume positive and
negative values, however usually different from ±1 as in
the generic Hopfield model. Also, the sum in equation (32)
extends over all N vibrational modes instead of p patterns,
and the contribution to J

(ion)
ij from each vibrational mode n is

weighted by the square of the respective vibrational frequency
νn. Despite these differences, it is possible to store spin
patterns with trapped ions in a robust way.

What are the patterns, based on the learning rule (32), that
can be stored by a trapped ion neural network? The orientation
of a specific ionic spin i in a pattern �ξ of spin orientations is
determined by the sign of Sin for a given vibrational mode n.
In the case of the COM mode, for example, we have Sin > 0
(or Sin < 0)∀i which means that in the two associated patterns
all spins are either pointing up or all down.

Numerical simulations (Pons et al 2007, Braungardt et al
2007) show that in order to robustly store a pattern of spin
orientations, it is necessary to adjust the trapping potential
such that the vibrational frequencies ν1 and ν2 (that appear
in the learning rule (32)) are nearly degenerate. This can
be achieved by using ion traps with segmented electrodes
where the Hessian of the trapping potential can be tuned
by applying suitable voltages to individual segments (Hugh
and Twamley 2005, Wunderlich and Wunderlich 2009). The
robustness of the ion NN has been quantified by Monte Carlo
simulations for a string of 40 40Ca+ ions trapped such that
the two lowest vibrational modes characterized by ν1 and
ν2 are nearly degenerate. For this purpose, a spin pattern
�ξμ, μ = 1, 2, corresponding to either one of the two modes is

prepared as the initial condition of the ions’ spin orientations.
Then a fixed number r of spins are randomly selected and
their state is inverted. This is followed by the time evolution
of the ion string until an equilibrium state is reached. The
probability of the ion string ending up in the initial pattern is
found to be more than 97% even when up to eight randomly
selected spins are initially in the wrong state (i.e. they do not
match the desired pattern). Thus, even with 20% of the spins
being flipped, the ion string returns towards a desired pattern.

So far we have looked at the robustness of a Hopfield-
type neural network where each node consists of a single ion
and which is used for classical information storage. For a
quantum neural network, the elementary unit for information

processing is, instead of a single spin-1/2 with two eigenstates
corresponding to |0〉 and |1〉, a pattern �xi of N spins. In Pons
et al (2007) and Braungardt et al (2007), it is detailed how
an appropriately chosen set of patterns with eight trapped
ions may be used as qubits thus forming a quantum neural
network. In particular, single-qubit gates and two-qubit gates
by adiabatic passage are worked out that make use of additional
effective fields.

2.4. Mesoscopic systems

The question if and to what extent quantum mechanical
effects play a role in mesoscopic or even macroscopic
systems was already posed shortly after quantum theory was
developed (Schrödinger 1935). Except concerning some
particular physical phenomena, for example macroscopic
currents in a superconducting material, it is usually assumed
that superposition states, interference and entanglement are
not relevant when dealing with entities made up from a
large number of individual constituents that, in addition, may
interact with a noisy environment at non-zero temperature,
for example biologically relevant molecules. Indications
that quantum mechanics indeed plays an important role even
for large molecules come from recent experiments where
interference with C70 molecules was observed (Hackermuller
et al 2004).

A theoretical study of how dephasing caused by coupling
to a noisy environment can actually assist in transferring
energy (or information), instead of impeding it, across a
network of quantum nodes is presented in Plenio and Huelga
(2008). It is shown that in a simplified model, light-
harvesting molecules may take advantage of this process.
An experimental verification directly with these molecules
is difficult at present. However, trapped ions may be used to
implement a suitable model to test such a prediction. For a first
simple demonstration, appropriately chosen internal levels of
a single ion may be used to model the nodes of a network and
induced and spontaneous transitions between these levels to
mimic energy transport.

Another recent theoretical study demonstrates that
entanglement may persist in a model two-spin molecule even
when it is exposed to a decohering hot environment, a situation
typically encountered for biological molecules (Cai et al
2008). The time-dependent Hamiltonian modelling the two-
spin molecule used for this study is

HM(t) = J (t)σ 1
x σ 2

x + B(t)
(
σ 1

2 + σ 2
z

)
. (33)

This molecule is then coupled to a noisy environment
modelled by a master equation. After performing a unitary
transformation such that σx → σz and σz → −σx , we
recognize a time-dependent variant of the quantum transverse
Ising model (4) which could be realized with an ion spin
molecule by using the spin coupling present in equation (16)
and by adding a driving field as in equation (22).

3. Quantum optics simulating quantum optics

The formal similarities for creation and annihilation operators
for photons and phonons on one hand and spin S = 1/2
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particles on the other hand suggest the equivalence of various
and seemingly different experiments within the field of
quantum optics. In this notion, a Ramsey measurement might
be regarded as simulating a Mach–Zehnder interferometer,
since a wavefunction is coherently split and recombined after
independent time evolution of its constituents. Therefore,
one general proposition which also holds for other classes
of experiments discussed in this paper may be of particular
importance here: simulation goes both ways. If the
Hamiltonian describing a set-up in an ion trap, possibly
including static and radiation fields, is equivalent to the
Hamiltonian of another system, then the ion-trap experiment
can be thought of as a simulation of the other system of interest.
But on the other hand, it also means that this other system might
reveal some insights into certain aspects and experiments in ion
traps and, depending on the specific technical difficulties when
trying to perform it in an ion trap, it might also be imaginable
to simulate some aspects of ion-trap physics in other systems.
As pointed out earlier, however, trapped laser-cooled ions are
a flexible, well-controlled and well-understood system, which
can be brought into a variety of regimes, where the physics
resembles other systems. Nowadays we are familiar with the
fact that photons as well as the internal states of particles can
be entangled (or combinations of photons and internal states),
and it might sound unusual to phrase any such experiment as a
simulation of another. Nevertheless, the creation and detection
of entanglement of particles or photons is subject to different
problems and certain aspects of entanglement and its meaning
in investigating fundamental questions of quantum mechanics
might best be looked at in either approach (Wineland et al
1998).

3.1. Theoretical background

In the early days of quantum information, it already became
clear that quantum computing at a level of factorizing large
numbers would be a daunting task (see Wineland et al (1998)),
though, since then, astonishing progress has been made in this
field. The first articles considering quantum simulations were,
to some extent, motivated by the insight that the requirements
for quantum simulations (in terms of gate fidelity, etc) are
less stringent despite their potential to investigate systems that
are beyond the reach of simulations with classical computers.
Despite all progress, this statement still holds and is one
motivation for this paper.

The experiments in quantum optics that are considered
in Wineland et al (1998) and Leibfried et al (1997) can be
simulated by trapped ions interacting with radiation fields that
drive Raman transitions between hyperfine levels. A similar
description can be obtained when these transitions are directly
driven using microwaves (using auxiliary inhomogeneous
magnetic fields) (Mintert and Wunderlich 2001, 2003,
Wunderlich 2002, Johanning et al 2009) or when optical
transitions between metastable states are used. For a
harmonically bound atom interacting with two travelling
wave light fields, both detuned from any real state and
with frequency difference �ω and phase difference φ,
the Hamiltonian in the interaction picture can be brought

into a form Hεl (after rotating wave approximation and
adiabatic elimination of the near-resonant excited states and
in the Lamb–Dicke limit η2〈(a + a†)〉 � 1) (Wineland
et al 1998) with integer l indicating changes in the
motional state and ε ∈ [0, 1] indicating changes in the
internal state. These Hamiltonians are frequently used in
experiments with laser-cooled ions; to name a few, H10

is called the carrier transition, H12 is the second blue
sideband, H01 is called coherent drive and H02 is the
squeeze drive. Nesting and concatenating operators taken
from the set H01,H02,H03,H10,H11,H12,H13 is sufficient to
efficiently generate a wide range of Hamiltonians, such as the
Hamiltonian for a spin s = 1/2 particle with mass μ in an
arbitrary potential (Leibfried et al 2002).

These chaining of Hamiltonians could be used for a
variety of experiments, such as, just to highlight a few, the
phonon maser (Wallentowitz et al 1996) and three-phonon
down conversion (Wineland et al 1998), and has been used
to create motional cat states (Monroe et al 1996b), coherent
states (Meekhof et al 1996a, 1996b) and a Hamiltonian similar
to two photon excitation in cavity QED (Leibfried et al
1997). An example discussed in the following subsection
is an experimental analogy to a nonlinear two-beam (e.g.
Mach–Zehnder) interferometer as proposed in Wineland
et al (1998). Using ions for the implementations allows for
high state preparation and detection efficiency and eliminates
the need for data postselection.

All the above experiments used only a single ion, and
innumerable possibilities come into reach using multiple ions.
The first demonstration of the CNOT gate (Cirac and Zoller
1995) was a step in this direction using, however, a single
ion and its motional degree of freedom (Monroe et al 1995a).
This concept can be adapted to entangle different atoms when
it is carried out after the state of one ion is mapped onto
the centre-of-mass (CM) mode and afterwards mapped back
(Schmidt-Kaler et al 2003, Leibfried et al 2003).

3.2. Experiments

As a demonstration of a quantum simulation with a single
ion, the Hamiltonians H11,H12,H13 are used in Leibfried
et al (2002) to simulate a set of two nonlinear beam splitters
forming a nonlinear Mach–Zehnder interferometer. A single
9Be+ ion provides the internal state |a〉 with

|0〉a = |F = 1,mF = −1〉
|1〉a = |F = 2,mF = −2〉 (34)

and the motional state |n〉b labelling the nth vibrational state.
The experimental sequence is depicted in figure 6 and is as
follows: the ion is cooled to the ground state of motion
|1〉a |0〉b. A Raman π/2 pulse applied to the appropriate
sideband is used to create a state proportional to |1〉a′ |0〉b′ +
|0〉a′ |n〉b′ . This is equivalent to a beamsplitter: analogous
to coherently splitting light into two separate directions, the
population is coherently split into two states which, in this
case, differ in both internal and motional quantum numbers.
Subsequently the potential of the endcap electrodes is changed
yielding trap frequency change �νz,1 for a time t which
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Figure 6. Ion-trap Mach–Zehnder interferometer: the manipulation
of the wavefunction of a trapped ion can be thought of as analogous
to a set of two nonlinear beamsplitters forming a nonlinear
Mach–Zehnder interferometer.

introduces a phase shift n�νz,1t = nφ when the ion is in
the nth vibrational level. Finally, a second π/2 pulse on the
same sideband is applied which maps the phase difference
to the population in the internal states |0〉a and |1〉a which
is measured by Doppler cooling and fluorescence detection.
The absolute acquired phases are irrelevant as is the total arm
length of a Mach–Zehnder interferometer: longer arms only
tend to make it more susceptible to perturbations; however,
the signal at the outputs is given by the differential phase shift.
The sequence is repeated to improve the signal to noise ratio
and to extract the sinusoidal time evolution in the different
states.

The experiment can be interpreted as a nonlinear Mach–
Zehnder interferometer. A nonlinear beamsplitter can
annihilate a photon in mode a while creating n photons in
mode b (or vice versa). The annihilation operator a is replaced
in this experiment by the atomic raising operator σ + between
the states |F = 2,mF = −2〉 and |F = 1,mF = −1〉. These
two operators are not equivalent but they act the same as
long as the {|0〉a , |1〉a} subspace is not left, which is fulfilled
as long as the input state is |1〉a |0〉b. The optical mode
with lowering operator b is replaced by the motion along a
selected direction and phonon number states |n〉b. A nth-order
nonlinear beamsplitter is then given as

Bn = h̄�n[a(b†)n + a†(b)n]. (35)

When this operator brackets an operator that causes a phase
shift in one arm by nφ, the system resembles a Mach–Zehnder
interferometer and the probability of detecting a phonon in
output a′′ becomes

Pa′′ = 1
2 [1 − cos(nφ)]. (36)

This experiment requires a sideband transition in the nth
sideband, which can be very inefficient with increasing n as the
sideband Rabi frequencies scale with ηn and the preparation
becomes slow. A faster alternative route exploiting an
auxiliary state and first-order sidebands is detailed in Wineland
et al (1998).

An increase in fringe frequency proportional to the
order of the nonlinearity is found but the fringe contrast is
reduced with increasing n, as preparation and manipulation
imperfections spoil the fidelity of the states and the detection
efficiency is below 1 for all experiments. The sensitivity of
the output signal to phase changes is maximized at the steepest
slope of the signal and the signal to noise ratio for the n = 2
and n = 3 measurements is found to exceed that of a perfect

first-order interferometer with unit detection efficiency. A
potential improvement by increasing n from 2 to 3 is almost
perfectly cancelled by the reduction of fringe contrast in the
data presented in Leibfried et al (2002).

4. Transverse standing wave: Bose–Hubbard
physics (and beyond)

Laser cooling and trapping have been considered (Hänsch
and Schawlow 1975, Wineland and Dehmelt 1975) and
successfully applied (see Ghosh (1995), Metcalf and van der
Straten (2001), and references therein) to both neutral atoms
and ions. Both types of laser cooling experiments are often
very much alike not only in terms of the description of the
experiment (trap frequencies and depths, Rabi frequencies,
etc) but also in terms of experimental techniques. A recent
topic in cold neutral atom physics is the combination of
cold trapped atoms and optical lattices which allows us to
experimentally investigate the Bose–Hubbard model (Fisher
et al 1989), which is related to the Hubbard model in solid-state
physics (Hubbard 1963). The freedom in changing tunnelling
and interaction parameters, the defect-free optical lattices and
the controlled introduction of disorder (Schulte et al 2006)
allow nice and clean experiments (Greiner et al 2002, Morsch
and Oberthaler 2006). Also, fermionic atoms have been loaded
into traps and lattices and brought to quantum degeneracy.
The description of such experiments by the Bardeen–Cooper–
Schrieffer (BCS) theory (Bardeen et al 1957, Giorgini
et al 2008) is known from superconductivity, and this
analogy encourages the hope that these experiments can
help to investigate and understand high Tc superconductivity
(Hofstetter et al 2002, Holland et al 2001).

The large and long-range Coulomb force being the
dominant force in ion traps has a number of consequences:
trap frequencies, trap depths, interaction energies and particle
separations are typically higher by orders of magnitude
compared to traps for neutral atoms. Thus Bose–Einstein con-
densation (and also Bose–Hubbard physics), one long sought
holy grail in quantum optics, has therefore been investigated
with neutral atoms but not with ions; when cooling neutral
atoms at sufficient density, their wavefunctions can overlap
and a macroscopic population of the trap ground state forms
(Anderson et al 1995, Davis et al 1995a). When on the other
hand an ion chain is cooled to the lowest vibrational mode
(Diedrich et al 1989), the ion separation is orders of magnitude
larger than the spatial extension of the wavefunction.

But quantum degeneracy and Bose–Hubbard physics can
still be simulated in ion traps when the ions take the role
of lattice sites which can be populated by phonons, more
specifically excitations of the vibrational modes transverse
to the weak trap axis. The phonons therefore represent
the neutral atoms located in one lattice site and phonons
can tunnel between sites as do the atoms in optical lattices.
Furthermore, as we will see later on, the phonons can be
made interactive by anharmonicities in trapping potential.
These anharmonicities can be introduced by the light shift
of an off-resonant standing wave (see figure 7). This could
be used to demonstrate a Bose–Einstein condensate (BEC)
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(a) (b)

Figure 7. Experimental set-up (not to scale) for the simulation of
Bose–Hubbard physics. Images (a) and (b) are sketches of the trap
and the applied standing wave potential, respectively. The
illustrations are not drawn to scale; especially the wavelength of the
standing wave is greatly exaggerated for visual clarity. (a) The trap
as seen from one of the endcap electrodes. (b) The set-up from the
side, as seen in most cases from an imaging detector; the weak trap
axis is perpendicular to the standing wave.

of phonons (Porras and Cirac 2004b), the superfluid–Mott-
insulator transition (Deng et al 2008) and, at higher levels
of interaction energy, the Tonks–Girardeau gas (Deng et al
2008) and even frustrated XY models (Schmied et al 2008).
In 1D, the BEC at non-zero temperature is only possible when
the number of atoms (or here phonons) is finite, and we are
in the weak coupling regime, which means that the average
interaction energy is smaller than the expectation value of
the kinetic energy. A peculiarity of the effective phonon
interaction being dependent on the position of the standing
wave is that it can be tuned, even in sign, similar as the
magnetic field can change the scattering length near a Feshbach
resonance.

Besides the general appeal to demonstrate Bose–Einstein
condensation in yet another system, Bose–Hubbard physics
in ion traps offers advantages, and also drawbacks, over
present neutral atom experiments: experiments in ion traps
do not only offer global control of the tunnelling rate and
interaction energy (as we will see later), equivalent to ramping
the optical lattice depth or applying a magnetic field to obtain
a certain scattering length near a Feshbach resonance. Ion
traps also allow for local control: irregular lattices correspond
to site-dependent tunnelling rates and can be obtained in
segmented microtraps; the interaction energy can as well be
made site dependent by having independent standing wave
intensities and phases at the different ion positions—in terms
of neutral atoms, this would correspond to arbitrary 3D
Feshbach magnetic fields. Other interesting features include
single site control and readout of the state and the potential
to extract the density matrix either partially or even fully (in
small systems). On the other hand, the experiments discussed
here are restricted to bosonic phonons and thus Bose–Hubbard
physics and today’s ion traps are mostly restricted to one
dimension but true two-dimensional systems can be obtained
in surface traps (Seidelin et al 2006).

4.1. Background

When we speak of phonons in the context of linear ion traps,
we often think in terms of axial normal modes. In this

situation, momentum is transferred by local interaction with
the addressed ion which couples efficiently to the motion of the
whole chain due to changing separations and acting Coulomb
forces. In this section, radial modes of the ion motion are
considered. Classically, a radial displacement of a single ion
excites both the radial motion of other chain members and
the axial motion of the whole chain. But when the axial ion
separations are much larger than the radial excursion of the
ion motion, the coupling of this motion to all other modes is
very inefficient: the motion is almost perfectly perpendicular
to the Coulomb interaction between ions all the time and does
not change the ion separations to first order. Thus, radial
phonons can be viewed as being located to one ion but the
non-vanishing coupling makes the localization non-permanent
and re-emerges as a finite phonon tunnelling rate.

The Hamiltonian describing the system reads as (Deng
et al 2008)

H0 =
N∑

i=1

p2
i

2m
+ VT +

N∑
i,j=1,i>j

1

4πε0

e2

| �Ri − �Rj |
, (37)

where the trapping potential VT could be simply quadratic like
the effective potential created by a simple linear Paul trap or be
an array of microtraps achieved by micro-structuring (Rowe
et al 2002, Stick et al 2006). We will look in more detail into
one radial coordinate x and excitations at the trap frequency
νx,1 in this direction. The trap frequency νy,1 can be chosen to
be non-degenerate to allow for addressing specific sidebands
and to avoid unwanted couplings. The absolute value of the
Coulomb force between two particles separated by a large
distance δz in the z-direction and displaced only slightly by
δx in the x-direction is

| �F | = e2

4πε0

1

δx2 + δz2
≈ e2

4πε0

1

|δz|2 . (38)

The component in the x-direction of the Coulomb force is
given by

Fx = | �F | δx√
δx2 + δz2

≈ | �F | δx

|δz| . (39)

When the radial separation δx is identified with xi − xj and
the axial separation δz with the unperturbed z0

i − z0
j , the radial

potential for small relative displacements becomes

HCoulomb,x ≈ −1

2

e2

4πε0

N∑
i,j=1,i>j

(xi − xj )
2

|z0
i − z0

j |3
. (40)

Introducing the quantities

ti,j = 1

2

1

4πε0

e2

mν2
x,1

h̄νx,1∣∣z0
i − z0

j

∣∣3
ν

(i)
x,1 = νx,1 −

N∑
j=1,j �=i

ti,j ,

(41)

the second quantized form becomes (Deng et al 2008)

Hx0

h̄
=

N∑
i=1

ν
(i)
x,1ni +

N∑
i,j=1,i>j

ti,j
(
a
†
i + ai

)(
a
†
j + aj

)
. (42)

The quantities ti,j are site-dependent hopping terms resulting
from the non-vanishing coupling of the radial motion between
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all ions in the chain. The closer the ions, the stronger
the coupling of ion motions and therefore tunnelling of
transverse phonons. The next-neighbour tunnelling is
therefore the strongest but its slowly decaying behaviour with
lattice site difference can already be seen from equation (40),
leading to long-range tunnelling in stark contrast to pure next-
neighbour tunnelling, as found in neutral atom experiments.
The Coulomb repulsion from adjacent ions has a maximum for
δx = 0 and counteracts the radial trapping potential, and ν

(i)
x,1

are the reduced radial trapping frequencies. These changes in
the radial trapping frequencies and therefore the reductions in
the phonon energies are the strongest for small ion separations
and thus lead to an axial phonon confinement towards the
centre of the trap (Deng et al 2008). The more inhomogeneous
the ion separations, the stronger the confinement becomes.
Therefore, this effect is more pronounced in a linear ion trap
compared to the isospaced array of microtraps (with almost
constant ion separations) and becomes more evident with
increasing ion number. Due to the large separation of ions
and the small transverse oscillation amplitudes, the effect
of the Coulomb interaction on the radial potential is just a
change in the trapping frequency. The anharmonicities, that
should in principle be already present have been neglected so
far. A purely harmonic trapping potential results in equally
spaced oscillator levels, meaning that the energy of having
two phonons located on different sites or both at the same site
gives the same total energy. Interacting phonons means that the
energy of having two phonons at the same site is the sum of the
two single phonon energies, altered by an interaction energy,
and the oscillator levels are no longer equidistant. A nifty idea
to mimic this interaction is to introduce an anharmonicity to the
trapping potential and thus to break the regular spacing of the
trap levels. This can in principle be done by any non-harmonic
potential, for example a sinusoidal potential as known from
optical lattices generated by an off-resonant standing wave
with wave vector kSW (Deng et al 2008):

HSW = F

N∑
i=1

cos2
(
kSWxi +

π

2
δ
)

, (43)

where F is the peak ac-Stark energy shift. For small
anharmonicities, the Hamiltonian Hx0 +HSW can be expanded
in the Lamb–Dicke parameter ηx,SW with

ηx,SW =
√

h̄2k2
SW

/
2mh̄νx,1 (44)

and is sufficiently approximated when truncated after second-
order terms and the Hamiltonian can be brought into the well-
known form of the Bose–Hubbard model (Deng et al 2008,
Fisher et al 1989):

H BHM
x =

N∑
i,j=1,i>j

h̄ti,j
(
a
†
i aj + H.c.

)
+

N∑
i=1

h̄
(
νx,1 + ν

(i)
x,1

)
a
†
i ai

+ U

N∑
i=1

a
†2
i a2

i . (45)

In this approximation of small anharmonicities, the total
radial phonon number is conserved and coupling to axial
modes is neglected. The third term in equation (45) has a

Figure 8. The transverse potential as a sum of a parabolic trapping
potential plus a far off-resonant standing wave. The solid curve with
medium curvature shows the unperturbed effective trap potential,
while the dashed curve with lowest curvature is the total effective
potential with a standing wave having an antinode at the ion
position, resulting in a effective repulsive interaction of phonons.
The dotted curve with highest curvature shows the total effective
potential with a standing wave having a node at the ion position,
resulting in a effective attractive interaction of phonons.

Figure 9. Shifts of the harmonic oscillator levels due to the standing
wave (not to scale). The centre image shows an undistorted
harmonic trap with equally spaced energy levels. When a standing
wave along x is added, such that it has an antinode at the trap centre
(left-hand side), the base level is lowered due to the quadratic part in
the standing wave. In addition, the higher levels are raised due to the
quartic part of the dipole potential. The spacing of the levels is no
longer equidistant and mimics a repulsive interaction of the
phonons. For an additional standing wave with a node at the trap
centre (right-hand side), the lowest level is raised due to the upward
curvature of the dipole potential. The level spacing is reduced and
also non-equal and pretends a attractive interaction of the phonons.
The grey dashed lines in the outer graphs again indicate unperturbed
potential and energy levels.

contribution proportional to the phonon number squared which
is responsible for the interaction. Its strength is scaled by
(Deng et al 2008):

U = 2(−1)δFη2
x,SW. (46)

The interaction depends on the strength and the relative
position δ of the standing wave and can even change its sign
(see equations (43) and (46)); it is maximal positive/repulsive
for ions at the antinodes of the standing wave (δ =
0) and maximal negative/attractive for ions at the nodes
of the standing wave (δ = 1). This can be seen in
figures 8 and 9: the small sinusoidal alteration from the
standing wave makes the tip of the parabola slightly pointier
for a node of the standing wave or chamfered for an antinode
of the standing wave which results in a shift of the trapping
frequency. The interesting consequence, however, is the
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differential shifts of the oscillator levels which are depicted
in figure 9; the fourth-order contribution from the extremum
of the sinusoidal potential has always the opposite sign of
the quadratic contribution. Thus it is curved upwards for an
antinode of the standing wave (meaning that the quadratic term
is curved downwards) and shifts higher levels up, mimicking
a repulsive interaction. A node of the standing wave has
an upwards curved quadratic contribution; the fourth order is
curved downwards, making the trap softer when walking away
from the centre and reduces the energy of higher trap levels
imitating an attractive interaction.

The Bose–Hubbard model is well known in neutral atom
physics (Fisher et al 1989). When the total phonon number Nph

is an integer multiple of the ion number Nion, the model predicts
a transition from the superfluid state (dominated by tunnelling)
to a Mott-insulator state (negligible tunnelling) with a constant
phonon number per lattice site. This transition can be traversed
by changing the ratio of the tunnelling frequency to repulsive
interaction energy (that is, changing the trap frequency
or standing wave intensity). For incommensurate phonon
numbers that are not integer multiples of the ion number, a
finite number of stages with constant phonon occupation can
be anticipated, with the highest phonon populations at the
bottom of the phonon confining potential, that is, at the trap
centre. In neutral atom physics, the superfluid–Mott-insulator
transition has been observed in beautiful experiments (Greiner
et al 2002).

The framework of the Luttinger liquid theory (Luttinger
1963, Voit 1995) predicts algebraic decay of correlations
between the number of phonons for the superfluid phase when
phonon tunnelling beyond next neighbours is neglected (Deng
et al 2008):

Cnn
i,j = 〈ninj 〉 − 〈ni〉〈nj 〉 ∝ |i − j |−2 (47)

and correlations that are nondiagonal in the phonon number
decay as

Caa
i,j =

〈
a
†
i aj

〉
√〈ni〉〈nj 〉

∝ |i − j |−α (48)

with α ∝ √
U/tn0 given by the ratio of tunnelling to

interaction at the central phonon density n0. In the Mott phase,
however, both correlations decay exponentially with distance:

C
aa,nn
i,j ∝ e−|i−j |/ξ (49)

with the correlation length ξ .
Phonon densities and fluctuations from numerical

calculation using the density matrix renormalization group
method (DMRG) (White 1993) were presented in Deng
et al (2008) for linear traps and an array of microtraps.
The calculations reproduced the superfluid–Mott-insulator
transition starting from the sides of the chain (due to larger
ion separations, the tunnelling rate is lower at the ends).
Especially for an array of microtraps, the Mott phase features
an almost flat mean phonon number per lattice site along the
chain for a commensurate ion and phonon number and the
fluctuations are also flat and strongly reduced. For linear
traps, the inhomogeneous ion separations modulate phonon
numbers and fluctuations which are both more peaked at the

chain centre. The correlations in the superfluid phase are
found to be in agreement with equations (47) and (48) for
short (linear trap) and intermediate (microtrap array) distances,
and signatures of finite size effects and inhomogeneous ion
separations can be seen and are found to be more important in
linear traps. In addition, long-range correlations in the Mott
phase are found that can be attributed to the long-range hopping
terms in equation (41). For large repulsive interactions and
incommensurate filling the system was found in Deng et al
(2008) to form a Tonks–Girardeau gas (Girardeau 1960, Lieb
and Liniger 1963) which has been recently observed in neutral
atoms (Paredes et al 2004, Tolra et al 2004). Due to their
repulsion, the phonons cannot get past each other and attain
the hard core bosons limit and tunnelling is suppressed. The
atoms/phonons behave neither purely bosonic nor fermionic,
because they can occupy the same momentum state but not
the same position in space. Mathematically, there is an exact
one-to-one mapping between impenetrable bosons and non-
interacting fermions for a one-dimensional system. Numerical
studies in Deng et al (2008) for an array of microtraps and
half-filling (Nph = 1/2Nion) show a constant phonon number
distribution together with algebraically decaying correlations.
The exponent of the decay deviates from the value 1/2
which is expected for a Tonks gas with nearest-neighbour
interaction only. This is explained by mapping the BHM
to a XY model with antiferromagnetic dipolar interactions.
Deng et al (2008) also studied attractive systems and used
site-dependent interactions to construct systems with highly
degenerate ground states described by an XY model.

4.2. Experiments

For a string of 50 ions with a minimum axial separation of
5 μm and a radial trapping frequency νx,1 about 70 times higher
than the axial trapping frequency νz,1, the tunnelling rates tij
were found to be comparable to the axial trapping frequency.
For F = h̄νx,1 which is realistic with commercially available
laser systems, the axial frequency is changed by a few 10% and
the system remains in the phonon number conserving regime
and the phonon interaction energy U is approximately twice
the tunnelling rate (Deng et al 2008).

The interesting quantities are the number of atoms at
each lattice site, corresponding to the number of transverse
phonons at each ion, their fluctuations and their correlations.
Phonon occupation cannot be measured directly but can
be mapped on the internal state and the ions’ resonance
fluorescence is recorded. The mapping is accomplished by
sideband transitions with carrier Rabi frequency �—note that
a sideband does not refer to the axial mode as usual but to
the radial mode along the x-axis here. Since the strength
of the sideband transition depends on the expectation value
of the phonon number, the transition matrix element and
therefore the vibrational state can be extracted from repetitive
measurements (Meekhof et al 1996a, 1996b, Leibfried et al
1996). If the ion is not in a Fock state, each phonon population
contributes to a sin2(

√
n�t) term in the temporal evolution,

which is accordingly given by

P↑ =
∑

n

P (n) sin2(
√

n�t) (50)
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with P(n) being the probability of having n phonons. Different
frequency components in the temporal evolution can be
extracted from Fourier analysis to yield Pn (Meekhof et al
1996a, 1996b, Leibfried et al 1996) and reveal directly a
transition from superfluid to the Mott-insulator state. For a
Mott insulator, all ions are in the same vibrational state and
therefore have the same transition matrix element (assuming
the number of phonons being an integer multiple of the
ion number). Exciting sideband transitions on all ions
simultaneously brings all of them into the same internal state,
so for appropriately chosen (π -pulse) times the whole chain
will switch from dark to bright. For a superfluid, however, the
phonon expectation value is not a constant along the chain, and
there is no universal π -pulse and the ions will never undergo
common oscillations from the dark to the bright state when
varying the interaction time. If desired, the whole density
matrix can be deduced from quantum state tomography which,
of course, becomes tedious or, for all practical purposes, even
impossible for long chains.

4.2.1. Superfluid–Mott-insulator transition and creation
of a superfluid phonon state by adiabatic evolution.
This experiment is similar to the superfluid–Mott-insulator
transition by Greiner et al (2002) obtained by ramping the
optical lattice depth. A clear demonstration, as proposed in
Porras and Cirac (2004b), would start with an ion chain cooled
to a state with zero radial phonons, the ‘radial ground state’.
The optical lattice is ramped up to a high intensity U � tij
such that the ions sit on a node of the standing wave and the
phonons experience a repulsive interaction. A defined number
of phonons is introduced by sideband transitions, such that
the total phonon number is an integer multiple of the ion
number (e.g. by a π pulse on the blue sideband). If now
the phonon number is mapped back to the internal state by
sideband transitions, a collective switching from the internal
bright to the non-scattering state should be observed, that is,
the time for a π pulse is identical throughout the whole chain.
Alternatively, the interaction U is adiabatically reduced down
to a final strength Uf (the standing wave intensity is lowered),
such that the system remains in the ground state. At a critical
value Uf ≈ tij , the system undergoes a transition to a phonon
superfluid. When measuring phonon occupation numbers by
mapping them to internal states by sideband transitions, the
phonon numbers can be expected to be inhomogeneous, due
to the phonon trapping potential and non-negligible tunnelling.

4.2.2. Bose–Einstein condensation by evaporative laser
cooling. Evaporative laser cooling for phonons in ion traps
sounds like an oxymoron because in neutral atom physics
evaporative cooling terms a process free of laser scattering,
where only the highest energy atoms can leave the trap (Davis
et al 1995b) and take more than the average thermal energy
with them which, provided sufficient fast thermalization,
results in a cooler cloud. The analogy is that in the ion trap with
an axial phonon confining potential high phonon occupations
(labelled high energy phonons in Porras and Cirac (2004b))
can more easily tunnel to the ends of the chain, analogous to

hot atoms, and when laser cooling is applied to these ends
exclusively, the phonons are removed or evaporated.

A demonstration would start with a Doppler-cooled ion
chain with a given number of phonons per site. Applying laser
cooling at the ends of the ion chain removes or evaporates
high energy phonons (or phonon occupation numbers) from
the top of the phonon confining potential. A small interaction
U � tij allows for a phonon–phonon interaction and therefore
for thermalization, equivalent to the need of a non-vanishing
scattering length for thermalization of neutral atom clouds
and finally Bose–Einstein condensation of phonons can be
observed. Since this is a 1D system, the BEC cannot take place
in the thermodynamic limit N → ∞ at finite temperature,
but for a given number there will be a non-zero transition
temperature. In contrast to the Mott insulator (phonon Fock
state), the signature of this phase transition is more difficult
to extract. One can deduce phonon occupation distribution
from series of fluorescence images after sideband transitions
of varying time. Evaporative laser cooling for phonons should
reveal an abrupt transition from a thermal phonon occupation
distribution to the BEC distribution, which corresponds to a
distinction of a Gaussian and a Thomas–Fermi momentum
distribution for neutral atoms.

It could be interesting to modify the axial trapping
potential in microtraps such that the equilibrium positions
are really equidistant and the phonon trapping potential
becomes flat, corresponding to unconfined phonons and a
demonstration Bose–Einstein condensation of free particles,
similar to experiments by Meyrath et al (2005).

4.3. Frustrated XY models

For large anharmonicities, strong repulsion and low filling
factor Nph � Nion, the occupation by two phonons becomes
unlikely and the system attains the hardcore boson limit. The
phonons can be mapped to S = 1

2 spins via the Holstein–
Primakoff transformation as a†

α → S+
α, aα → S−

α and nα →
Sz

α + 1
2 . The resulting Hamiltonian is an XY model with

dipolar interactions and a site-dependent potential (Schmied
et al 2008):

HS = 2
∑
〈α,β〉

tα,β

(
Sx

αSx
β + Sy

αS
y

β

)
+
∑

α

VαSz
α. (51)

Hamiltonians like these are interesting because they allow us to
investigate frustrated XY models in one and two dimensions.
Frustration is a phenomenon relevant in condensed matter
physics and describes the situation where, due to the lattice
geometry or competing interactions, the interaction energies
cannot be simultaneously minimized which can result in highly
non-degenerate ground states with non-zero entropy, even at
zero temperature. Such frustrated XY models can now be
investigated in 1D and 2D systems, that is, in linear chains and
planar zigzag structures in linear ion traps and planar structures
in surface traps.

The 1D case leads to the S = 1
2XY antiferromagnet with

dipolar interactions, which becomes exactly solvable if only
next-neighbour interactions are considered. By weakening the
transverse confinement along one direction, the linear chain
is no longer the energetically favoured pattern and the ions
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arrange themselves in a planar zigzag ladder which can be
viewed as two linear chains relatively displaced to each other.
By variation of the radial trapping potential, the properties of
this two-dimensional structure, namely the zigzag amplitude
and thus the ratio of the dominant inter-chain (t1) to intra-chain
(t2) coupling, can be tuned. The zigzag amplitude ξ , measured
in units of the inter-ion spacing, is limited by the fact that for
too weak a transverse confinement the ion chain spontaneously
flips into helical order (around ξ ≈ 0.965). This in turn
limits the accessible range of coupling ratios when phonons
perpendicular to the zigzag plane are considered. But when
we exploit the phonons in the ladder plane, any |t2/t1| > 1/8
ratio can be accessed. For low zigzag amplitudes and intra-
chain couplings, the ladder is found to exhibit a long-range
antiferromagnetic Néel order and undergoes a transition at
ξ ≈ 0.461 to spiral order which shows both spontaneous
magnetic order and chiral order.

The chirality can be defined as

κi = 4
(
Sx

i S
y

i+1 − S
y

i Sx
i+1

)
, (52)

and the chiral order parameter is the averaged chiral correlation
over all ion pairs in the ladder:

O�
κ = 1

L − 1 − |�|
∑

i

〈κiκi+�〉

Oκ = 1

2L − 3

L−2∑
�=−(L−2)

O�
κ .

(53)

When we envision an experiment measuring this chiral order,
we first have to remember that the spins in (52) are not real
spins but phonons mapped back via the Holstein–Primakoff
transformation and that the probability of having double
phonon occupation is negligible. The expectation values for
the phonon occupation are thus given by the probability of
having single phonon occupation. To measure chirality and
the chiral order parameter, we have to measure phonons in
both transverse modes for each ion and their correlations
by sideband transitions. When the measurement is repeated
for different radial confinements and thus coupling ratios,
the transition from Néel to spiral order can be observed.
Another interesting feature to look at is a yet-not-understood
‘reorientation transition’ around ξ ≈ 0.8 found in numerical
calculations of up to 20 ions (Schmied et al 2008) which gets
more pronounced for larger ion numbers. Furthermore, the
convergence of the numerical algorithm used in Schmied et al
(2008) shows poor convergence for equal inter- and intra-chain
couplings and thus a measurement of the phonon correlation
function in this regime could be interesting.

Even more variations are possible in extended planar
lattices, for example triangular lattices as considered in
Schmied et al (2008). Rotating planar triangular Wigner
crystals have been observed in Penning traps (Mitchell et al
1998) and again they can be viewed as displaced linear chains
such that it is possible to define a ratio of inter- to intra-
chain couplings. A variety of phases has been found when
the orientation of the co-rotating standing wave and therefore
vibrational motion is changed relative to the lattice normal
(Schmied et al 2008). Another approach to implement such

(a)

(b)

(c)

Figure 10. (a) Basic Frenkel–Kontorova model: a one-dimensional
chain of atoms with next-neighbour interactions is exposed to a
sinusoidal potential; (b) and (c) possible spatial configurations. The
upper configuration (b) is unstable—the total energy, which is a
function of the coordinates of all particles, has a saddle point,
whereas configuration (c), obtained only by a minuscule sideways
shift, is stable corresponding to a minimum of the total energy (after
Braun and Kivshar 1998)

lattices is by means of surface traps (Chiaverini and Lybarger
2008, Seidelin et al 2006). The equilibrium ion positions and
therefore the ratio of inter- to intra-chain couplings is given
by the effective potential generated by the trap. A variation
of the ratio of relevant couplings could be investigated either
in a series of surface traps, each designed for an particular
coupling ratio, or by electrode geometries which allow for a
anisotropic deformation of the triangular lattice. It should be
pointed out that such planar traps would in principle allow us
to implement any desired lattice geometry.

5. Axial standing wave: the Frenkel–Kontorova ion
model

The Frenkel–Kontorova model (FKM) is a model describing
a linear chain of particles with harmonic next-neighbour
interactions which is exposed to a sinusoidal potential (Frenkel
and Kontorova 1938). The system of interest might remind the
reader of the Hubbard– or Bose–Hubbard model as discussed
in section 4.1; however, the Frenkel–Kontorova model is
simpler, being classical and one-dimensional and, on the
other hand, focuses more on classical nonlinear dynamics and
chaos, and questions of integrability and the persistence of
quasi-periodic motion (Braun and Kivshar 1998). Despite this
simplicity, the FKM is able to describe a variety of physical
phenomena such as crystal dislocations, commensurate–
incommensurate phase transitions, epitaxial monolayers on
a crystal surface, magnetic chains and fluxon dynamics in
Josephson junctions (see Braun and Kivshar (2004), and
references therein). The FKM is one of the first examples
in solid-state physics where a one-dimensional chain can be
used to model an extended two-dimensional defect in bulk
(Braun and Kivshar 1998).

5.1. Formalism and numerical calculations

In the basic model the interactions are harmonic and restricted
to next-neighbours, and the external potential is sinusoidal
(see figure 10). Without this external potential, the dynamics
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of the chain can be understood in terms of normal modes and
is quasi-periodic. When the potential is switched on but the
perturbation is small, that is, below the critical perturbation
strength, the system is in the so-called sliding phase and the
chain can oscillate in the lattice and the ion positions follow
a Kolmogorov–Arnol’d–Moser curve (Braun and Kivshar
2004). For higher perturbations, the system undergoes an
Aubry analyticity breaking transition (Aubry and Le Daeron
1983) and the ion chain starts to be pinned by the lattice and
the positions form a devils staircase corresponding to a fractal
Cantor set (Garcı́a-Mata et al 2007). The ground state is
unique for all perturbations, but in the pinned phase, a large
number of states exists very close to the ground state like in a
fractal spin glass (Zhirov et al 2002).

Various extensions and modifications of the basic
Frenkel–Kontorova model have been investigated, for example
arbitrary on-site potentials and anharmonic interactions
between the particles (Braun and Kivshar 1998). In the
following, we will focus on the Frenkel–Kontorova ion model
(FKIM) which is a classical picture for a laser-cooled chain
of ions trapped in a linear trap exposed to a standing wave
(Garcı́a-Mata et al 2007). For a sample of ions in a linear trap
with a much stronger radial than axial confinement, the ions
arrange themselves in a linear chain. When the radial motion
is frozen due to laser cooling, the chain can be described
in good approximation with a one-dimensional Hamiltonian.
Then the interaction of the particles is given by the long-
range Coulomb force and the external potential is a sum of the
effective sinusoidal potential from the standing wave and the
effective harmonic axial trapping potential. The Hamiltonian
is given by

H =
N∑

i=1

(
p2

z,i

2m
+

mν2
z,1

2
z2
i − K cos(2πzi/d)

)

+
∑
i>j

e2

4πε0

1∣∣zi − zj

∣∣ . (54)

The above Hamiltonian therefore corresponds to the general
ion-trap Hamiltonian given in equation (37) where only the
part in the z-direction is considered and a sinusoidal potential
of strength K and periodicity d is added. In Garcı́a-Mata et al
(2007), the authors investigate the dimensionless form of the
above FKIM–Hamiltonian which reads as

H =
N∑

i=1

(
P 2

i

2
+

ν̃2

2
z̃2
i − K̃ cos z̃i

)
+
∑
i>j

1∣∣z̃i − z̃j

∣∣ . (55)

The ion positions z̃ are given in units of the reduced
lattice constant d̃ = d/2π and the energy Ẽ as well as the
strength of the sinusoidal potential K̃ is measured in units
of e2/4πε0d̃ . The modified angular frequency is obtained as
ν̃2 = 4πε0mν2

z,1d̃
3/e2. In the quantum case, the momenta are

given by Pi = −ih̄eff∂xi
with an effective Planck constant h̄eff

given as

h̄eff = h̄/(e
√

md), (56)

which depends on the lattice constant which allows us to scale
and investigate quantum effects as we will see later.

Figure 11. Frenkel–Kontorova ion model: the potential curvature,
the sine ripple amplitude and lattice constant are plotted for values
corresponding to the Aubry analyticity breaking transition at golden
mean density for a chain of 12 ions with a centre separation of
5 μm. A CCD image of a string of 12 172Yb+ ions is scaled to match
the conditions for the potential plot and indicates the unperturbed
ion positions.

First, the authors compare numerical solutions to the
classical ground-state problem in the FKIM to solutions of the
FKM with only next-neighbour interactions. The numerical
studies are performed for up to a few hundreds of ions at the
golden mean density (at the centre of the ion chain), where the
average occupation of a lattice site is (

√
5 + 1)/2 and results

in the golden Kolmogorov–Arnol’d–Moser (KAM) curve for
the ion positions commonly used for the studies of the Aubry
transition (Aubry and Le Daeron 1983, Braun and Kivshar
2004). The FKM leads to dynamical recursive maps for the
calculation of equilibrium ion positions which are found to
describe the centre 1/3 part of the ion chain appropriately. By
comparison of the solutions for FKM and FKIM equilibrium
positions, the influence of long-range interactions and the
trapping potential can be mapped out and is found to be
negligible in the centre region. Here, the ion density is
highest and almost constant and allows for screening of the
trap potential by nearby ions, similar to the Debye radius in
plasma physics. In the outer regions visible deviations in the
equilibrium positions are found, as the ion density is lower at
the ends of the chain.

As for the FKM, for small depths of the sinusoidal
potential (K̃ < 0.05), the chain is in a sliding phase. The
hull function, which compares the unperturbed equilibrium
positions to the perturbed ones modulo 2π , is continuous
and the phonon mode spectrum has a sound-like form.
At a critical strength of the standing wave (Kc ≈ 0.05),
as shown in figure 11, the system undergoes an Aubry
analyticity breaking transition (Aubry and Le Daeron
1983). Above the critical lattice strength, the ion chain
is in a pinned phase, their positions are described by a
devils staircase, which is a fractal Cantor set (Peitgen
et al 2004), and the phonon spectrum shows a gap. Another
similarity to the FKM is that in the pinned phase, the FKIM
has properties of a spin glass and features an enormous number
of stable equilibrium configurations energetically close to the
ground state (Zhirov et al 2002), despite the ground state being
unique.
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(a) (b)

Figure 12. Schematic (not to scale) of the experimental set-up
suitable for simulating Frenkel–Kontorova physics and observing an
Aubry transition. The standing wave is applied in the axial
direction, either by optical access through ring-shaped endcap
electrodes or by crossing two beams at an angle, such that the
counter-propagating component is aligned parallel to the weak trap
axis. (a) The view along the ion chain and (b) the set-up as seen by
an imaging detector used for measuring the ion fluorescence and for
the determination of ion positions and formfactor.

So far, all considerations have been purely classical.
Quantum effects were investigated in Borgonovi et al (1989)
and the quasi-degenerate configurations close to the ground
state are found to become important and tunnelling between
them leads to non-trivial instanton excitations (Garcı́a-Mata
et al 2007). The quantum case is studied in Garcı́a-Mata
et al (2007) using the quantum Monte Carlo (QMC) approach
(Grotendorst et al 2002, Nightingale and Umrigar 1998). To
see these structural changes, the authors look at the power
spectrum of the position distribution (in the classical case, zn

are the ion positions):

F(k) =
〈∣∣∑

n exp(ikzn(τ ))
∣∣2〉

δN
. (57)

From these numerical solutions, a phase transition from a
pinned instanton glass to a sliding phonon regime is observed,
depending on the value of the effective Planck constant h̄eff

(Garcı́a-Mata et al 2007) which can be varied by changing
the lattice constant and thus the influence of tunnelling,
and the transition taking place at h̄eff ≈ 1. For low values
of h̄eff the formfactor shows discrete resonances which in the
sliding phase are equidistantly spaced at integer multiples of
the golden mean density. However, if the ions are pinned
by the optical lattice, these resonances appear at integer values
of k. The pinned phase also shows a quantum transition when
h̄eff is increased: for low values h̄eff , the pinned phase is
not destroyed and discrete resonances are still found. For
larger values of h̄, the formfactor becomes continuous and the
transition occurs at a value h̄eff ≈ 1.

5.2. FKIM experiments

Experiments for investigating Frenkel–Kontorova physics
require a sinusoidal potential along a one-dimensional ion
chain. This can be implemented by a far off-resonant standing
wave along the weak trap axis as indicated in figure 12. Being
far off-resonant means that changes of the internal state due to
these lasers is unlikely within the duration of the experiment.
Following Garcı́a-Mata et al (2007) the ion density at the

centre should be the golden mean density, that is, the lattice
periodicity should be by a factor (

√
5 + 1)/2 larger than the

ion separation at the middle of the chain. This can be easily
obtained even at a fixed wavelength by changing the angle
between the intersecting beams that form the dipole potential
or, alternatively, by changing the trap frequency. To obtain
the golden mean density for ions separated by 5 μm, the
lattice periodicity is approximately 3.1 μm corresponding for
example to two beams at λ = 1064 nm, each enclosing an
angle of α ≈ 80◦ with the weak trap axis.

The position of the lattice has to be fixed relative to
the ions which means that the relative phase of the two
counter-propagating running waves has to be constant. This
requires stability and potentially active feedback on mirrors.
To maintain a constant depth of the sinusoidal potential along
the chain, the Rayleigh range would ideally be large compared
to the chain length, meaning that the waist would be large. The
required strength of the standing wave Kc to observe an Aubry
transition corresponding to a depth of 0.6 K ions separated by
5 μm which is much deeper than in neutral atom experiments.
On the other hand the trap frequencies are much higher in ion-
trap experiments and thus the timescales for a measurement
are shorter, allowing for lasers which are closer to the atomic
resonance, and in turn requiring less power. The challenging
power requirements can be lessened when the light cycles in a
resonant cavity, however, with a more demanding stability.

The effective Planck constant as given in equation (56)
contains the lattice constant and can in principle be changed
by adjusting either the wavelength of the light that forms
the sinusoidal dipole potential or the angle between the
intersecting beams. To maintain the golden mean density,
the trap frequency would be varied simultaneously. For
parameters given above, however, the effective Planck constant
is approximately 3×10−5 (calculated for Ca ions (Garcı́a-Mata
et al 2007)) and due to the weak dependence on the lattice
constant (see equation (56)) ion-trap experiments are likely to
be restricted to the semi-classical regime with h̄eff � 1, hardly
accessible for QMC calculations (Garcı́a-Mata et al 2007).

The experiment would start with an ion chain cooled to
the ground state. Ramping the standing wave along the weak
trap axis adiabatically up to the desired final strength ensures
that the system remains in its ground state and the equilibrium
positions and thus the formfactor can be measured.

Beside the general interest in the Frenkel–Kontorova
physics, an axial standing wave as discussed above might also
prove to be useful in the context of quantum information with
ion traps since the strong gap in the phonon spectrum found
in the pinned phase might allow for the protection of quantum
gates against decoherence (Garcı́a-Mata et al 2007).

6. Quantum fields and relativistic effects

6.1. Introduction

The way to prove a physical theory is to compare its predictions
with the observations. This has been the case with the
cosmological models where effects such as the red shift or the
homogeneous background radiation constitute observations in
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accordance with a description of an expanding universe and
the particle creation. But to perform a truly cosmological
experiment is out of the reach of our current technology, in
particular one that reproduces the early stages of the universe
characterized with an extremely high energy density and a
rapid expansion.

In other cases like with relativistic particles, it is possible
to make experiments where electrons for example are driven
to almost the speed of light. But some interesting effects are
still out of reach of our measurement capabilities, for example
the Zitterbewegung, predicted from the Dirac equation. It
states that a freely moving spin-1/2 particle, in absence of
external potentials, is subject to a helicoidal motion around
the main direction of propagation. Another counterintuitive
effect, the Klein paradox (Klein 1929), states that an electron
could transmit unimpeded through a potential barrier. But this
effect has not yet been observed with elementary particles.

6.2. Simulating the Unruh effect

6.2.1. Methods. Following the work of Unruh (1976), it
was shown that in the vacuum of a Minkowski (flat) universe
an accelerated observer would measure a thermal spectrum of
particles whose temperature is proportional to his acceleration.
Later, this effect was generalized by Gibbons and Hawking
(1977) for a curved de Sitter space. The de Sitter space is a
massless curved spacetime that is isotropic and homogeneous
in space and that looks like the Minkowski space locally
(Bergström and Goobar 2004). The de Sitter space is also a
cosmological model that describes an exponential expansion of
the universe due to a non-vanishing and positive cosmological
constant �.

The scalar field describing a massless inflating universe
with a single global mode can be imitated by the quantized
motion of a single ion around its equilibrium position. The
phonon excitations of the ion would simulate the field quanta
of the universe. The ion itself can be used as a detector by
coupling its vibrational state to an easily readable internal
state.

In the case of an expanding de Sitter universe, a comoving
quanta field detector would experience a Doppler frequency
shift of the form ν(t)� = ν�

0 exp (−√
3�t) (Birrell and Davies

1984). The spectrum measured with this detector is equivalent
to that measured by a thermally excited inertial detector with
a temperature T = h̄

√
3�/kB (Gibbons and Hawking 1977).

In the case of a single ion trapped in a time-dependent
potential that varies in the trap frequency ν(t) = ν0 exp (−κt),
a similar effect can be measured. A pseudo-temperature
of kBT = h̄κ/2π is associated with the average occupation
number of the vibrational energy levels.

The coupling between internal and vibrational states of
the ion can be created by a laser field described in the dipole
and rotating wave approximation by the interaction-picture
Hamiltonian (Alsing et al 2005, James 1998):

HI = h̄�kz(t)[σ−e−i�t − σ +ei�t ]. (58)

Here, σ + and σ− are the raising and lowering spin-1/2
operators, respectively, � is the detuning of the laser relative
to the atomic transition and � is the Rabi frequency. The laser

wave vector �k points along the direction in which the ion’s
vibrational motion is excited (here the z-direction). We assume
an anisotropic trap (e.g. a linear trap) where, by choosing the
detuning � and the wave vector �k, the experimenter can control
which vibrational motion to excite.

The evolution of the position operator z(t) is deduced by
solving the equations of motion of the ion in its harmonic trap
neglecting its coupling with the light field. In the Heisenberg
representation and with

H = p2

2m
+

m

2
ν(t)2z2, (59)

we have (Menicucci and Milburn 2007)

ż = − i

h̄
[H, z] = pz

m

ṗz = − i

h̄
[H,pz] = mν(t)2z. (60)

After the opening of the harmonic potential ν(t) during a
time T in which the interaction is on, a vibrational phonon can
be mapped into the excited |1〉 internal state. The probability
of exciting the internal state of the ion calculated with first
order perturbation theory and in the slow- κ � ν0 and long-
time ν0e−κT � κ frequency variations for the trap potential is
(Menicucci and Milburn 2007),

P (1)(�) = 1

h̄2

∫ T

0
dt1

∫ T

0
dt2 〈0| HI(t1) |1〉 〈1| HI(t2) |0〉

= (�η0)
2 2πν0

κ�2

1(
e2π�/κ − 1

)2 . (61)

When the trap is opened to simulate the expansion of the
universe, the ion is used as a detector to measure the thermal
spectrum from the phonon distribution. A particular case is
when the laser is in resonance with the red sideband (� ≈ ν).
The ion acts like a phonon detector that absorbs the measured
particle (together with a photon) in order to produce an internal
excitation of the ion. When the laser is in resonance with a
blue sideband (� ≈ −ν), the ion acts like an unconventional
detector that emits a phonon to get excited. The ratio of the
excitation probabilities gives the experimental signature of the
ion thermal distribution (Wineland and Itano 1979, Monroe
et al 1995b),

Pred

Pblue
= n̄

n̄ + 1
= e−h̄ν0/kBT , (62)

where n̄ is the average phonon occupation value. From the
excitation probabilities of equation (61), the ratio of the red to
the blue sidebands is given by Menicucci and Milburn (2007):

P (1)(�)

P (1)(−�)
= e−2π�/κ . (63)

Therefore, the temperature associated with the exponential
opening of the trap potential is given by T = h̄κ/2πkB.
This temperature is equivalent to the Gibbons–Hawking
temperature T = h̄

√
3�/kB (Gibbons and Hawking 1977).

The increase of the temperature of the trapped ion is due
to the trap opening. At the beginning of the trap opening,
the evolution is adiabatic since the trap frequency obeys the
condition |ν̇|/ν � ν. Indeed, the expansion constant was
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selected small compared to the initial trap frequency κ � ν0.
At a later time T chosen following the condition ν0e−κT � κ ,
the evolution turns to be non adiabatic. Indeed, the trap
frequency is going to be so weak that even a small rate of
change would be non-adiabatic. The ion that was initially in
the ground state is excited to higher vibrational levels because
of the non-adiabatic reduction of the confining potential.

6.2.2. Experiment. In this case, we measure the temperature
associated with the ion phonon distribution. This temperature
is related to the Gibbons–Hawking temperature.

To perform this experiment, a single trapped ion is cooled
to the vibrational ground state level. Next, the ion is pumped
into its electronic ground level that is related to the vacuum
state of the universe. Then, the trap potential, initially at the
frequency ν0, is exponentially reduced ν(t) = ν0 exp (−κt).
During the opening of the trap, Raman laser beams between
hyperfine levels or a narrow frequency laser tuned to a
quadrupole transition are set in resonance with the red or
the blue sideband. It should be noted that the coupling
field must be in resonance with the sideband during the trap
opening. After some time, the ion internal state is measured
by fluorescence using the shelving technique with the help of
an additional laser beam in resonance with the excited internal
state.

The trap potential is then raised and the sequence can be
repeated for the opposite sideband. The height of the red and
blue sidebands is compared and the temperature dependence
on the trap expansion coefficient κ is measured.

A typical value of the initial trap frequency ν0 �
1 MHz can be used to perform this experiment. Therefore, the
expansion coefficient can be selected like κ � 1 kHz and the
expansion time T of several ms. These are typical parameters
in current ion-trap experiments.

Difficulties that may arise when performing such an
experiment are associated with unwanted heating of the ion
caused, first, by a possible unintentional displacement of the
trap minimum and by anharmonic terms in the trap potential
and, second, by fluctuating patch potentials. The former
could be solved by compensating for the anharmonicities and
the displacement of the trap potential by tuning appropriate
compensating fields for every value of the time-varying trap
frequency. The latter could be overcome by performing the
experiment during a short enough time so that the heating can
be neglected.

6.3. Simulating the cosmological particle creation

6.3.1. Methods. The standard model describes the particle
creation from the vacuum fluctuations during the early stages
of the universe. Since the expansion of the universe is non-
adiabatic, an initial ground state will be excited evolving into
a squeezed state of entangled pairs of particles. The created
particle pairs are simulated by entangled phonon pairs created
by the excitation of the ground ionic motional level as the trap
potential is non-adiabatically varied.

One can use a real massless scalar field φ as an
approximation to describe an expanding or contracting
universe. Using the Friedman–Lemaı̂tre–Robertson–Walker
metric (Birrell and Davies 1984), ds2 = a6(t) dt2 − a2(t) dr2,

one finds that the wave equation describing the universe reads
as (Schützhold et al 2007)(

∂2

∂t2
+ [a4(t)k2 + ζa6(t)�(t)]

)
φk = 0, (64)

where the Ricci (curvature) scalar � is coupled to the field
via the dimensionless parameter ζ . Each mode k represents a
harmonic oscillator with a time-dependent potential a4(t)k2 +
ζa6(t)�(t).

In the case of a chain of ions trapped in a transversally
strongly confining linear trap with a time-dependent axial trap
frequency νz(t), the position zi of the ith ion follows the
equation of motion

z̈i + ν2
z (t)zi = γ

∑
j �=i

sign(i − j)

(zi − zj )2
. (65)

This equation can be solved classically by the use of the scaling
ansatz

zi(t) = b(t)z0
i , (66)

where z0
i are the initial equilibrium positions. The scaling

factor b(t) evolves following(
∂2

∂t2
+ ν2

z (t)

)
b(t) = ν2

z (t = 0)

b2(t)
. (67)

The quantum fluctuations are introduced by splitting the
position operator ẑi into its classical evolution b(t)z0

i and a
quantum fluctuation term δẑi(t):

ẑi (t) = b(t)z0
i + δẑi(t). (68)

Replacing equation (68) in equation (65) and later linearizing
over δẑi(t) (since the displacement of the ions can be assumed
small), one obtains after normal mode expansion (Schützhold
et al 2007) (

∂2

∂t2
+

[
ν2

z (t) +
ν2

κ

b3(t)

])
δẑκ = 0 (69)

for the phonon modes κ . One can recognize the similarities
between equations (64) and (69). The scalar field φk behaves in
the same way as the quantum fluctuation of the ions (phonon)
δẑκ , and each mode k of the field has a direct analogy with the
phonon frequency of the ions νκ .

It has been shown that a non-adiabatic change in the trap
potential can create squeezed states (Heinzen and Wineland
1990).

6.3.2. Experiment. The simulation can be performed in a
system composed of, for example, two hyperfine states |0〉 and
|1〉 of an ion. The states should be coupled by a two-photon
Raman transition or by an rf field in the presence of a magnetic
gradient. Note that the pairs of Raman beams or the rf field
couple not only the two hyperfine states |0〉 and |1〉, but also
the vibrational levels of the ion |n〉 = (|n = 1〉, |n = 2〉, . . .).
For this simulation, one uses three different coupling fields:
one coupled to the second red sideband |0, n + 2〉 → |1, n〉
(a), another to the first red sideband |0, n + 1〉 → |1, n〉 (b),
and the last one to the carrier transition |0, n〉 ↔ |1, n〉 (c).
An additional level |e〉 is used for fluorescence detection of the
population in level |0〉. The laser pulse (d) |0〉 → |e〉 drives a
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Figure 13. A possible energy level diagram and the transitions used
to measure the population in the n = 2 level. If the ion is found in
level |0, n = 2〉 after the trap contraction, then applying a π second
red sideband pulse (c) followed by a π carrier pulse (a) brings the
ion to the state |0, n = 2〉. When the ion is in this latter level,
fluorescence can be seen by using the detection laser (d). In contrast
if the ion is initially in |0, n = 0〉 or |0, n = 1〉, the first pulse (c)
would not change the state of the ion since it does not have enough
energy to be in resonance with the |1〉 energy level but the
subsequent carrier pulse (c) transfers the population to the
corresponding vibrational levels of |1〉. Then no fluorescence can be
seen when the detection laser (d) is applied. Note that the transitions
(a) and (c) should be narrow enough not to couple the adjacent
vibrational levels and that the detection laser drives a dipole
transition that couples many of the vibrational levels.

dipole transition that does not resolve the vibrational levels as
the Raman beams or rf field do.

A non-adiabatic increase of the strength of trap potential
confining the ion will simulate the universe expansion.
After non-adiabatically changing the trap potential, the ions
motional state will be a squeezed state where only even (i.e.
symmetric with respect to the trap minimum) vibrational
levels contribute. Thus, the signature of the squeezed state
is the population of even vibrational levels. Measuring the
population of the |n = 2〉 vibrational level should be sufficient,
since the population in higher vibrational levels is expected to
be negligible. In order to measure the population of the n = 2
state, one performs a series of pulses described in figure 13
that couple the motional state to the easily readable internal
state of the ion.

Since cooling is more efficient for strong confinement, it
is advantageous to begin with a strongly confining potential
and cool to the ground state of motion. Then, after an
adiabatic lowering of the trap potential it is ramped back up
non-adiabatically to its initial strength.

To discriminate against any classical heating, i.e.
parametric or other classical perturbations, the probability
of populating the n = 1 level can be measured in a similar
way as shown in figure 13. The comparison between both
probabilities gives the proof that a squeezed state is generated,
if a higher probability for populating the n = 2 level than
n = 1 is obtained.

6.4. Simulating the Dirac equation

6.4.1. Methods. Relativistic effects related to the solution of
the Dirac equation can be simulated in trapped ion systems as

proposed in Bermudez et al (2007) and Lamata et al (2007), in
particular phenomena such as the Zitterbewegung (helicoidal
motion of the free Dirac particle as a consequence of the
non-commutativity of its velocity operator components) or the
Klein paradox (transmission of a relativistic particle of mass
m through a potential edge of height V > 2mc2 with nearly
no reflection).

In order to simulate the Dirac equation in (3+1)
dimensions for a spin-1/2 particle in a single trapped ion,
Lamata et al (2007) proposed to design a Hamiltonian that
reproduces the same dynamics. For a free electron in three
dimensions, the Dirac formalism uses a bispinor that is a
vector-valued wavefunction of four components. In order
to represent all the components, one can use a four-level
system with states |a〉 , |b〉 , |c〉 , |d〉 that correspond to four
internal levels of the ion respectively. The bispinor is defined
as (Lamata et al 2007)

|�〉 := �a |a〉 + �b |b〉 + �c |c〉 + �d |d〉 =

⎛
⎜⎜⎝

�a

�b

�c

�d

⎞
⎟⎟⎠ . (70)

The dynamic of the system is generated by the pairwise
coupling of the internal levels with the centre-of-mass
vibrational levels whose energies are determined by the
trap frequencies νx, νy, νz. Again, three common types of
interaction are used. A carrier interaction coherently couples
two ionic internal levels without changing the external motion
of the ion, for example |a, n〉 ↔ |c, n〉. Jaynes–Cummings
(JC) and anti-Jaynes–Cummings (AJC) interactions resonantly
couple the ionic internal with the vibrational levels. The
former induce the red sideband transition and the latter the blue
one, for example |a, n + 1〉 ↔ |c, n〉 and |a, n〉 ↔ |c, n + 1〉
respectively. The corresponding interaction Hamiltonians
under the rotating wave and Lamb–Dicke approximations are

Hσ = h̄�(σ +eiφ + σ−e−iφ)

Hr = h̄η�̃(σ +a eiφr + σ−a†e−iφr) (71)

Hb = h̄η�̃(σ +a†eiφb + σ−a e−iφb)

Here again σ + and σ− are the raising and lowering ionic
spin-1/2 operators, a† and a are the creation and annihilation
operators associated with the motional state of the ion and
η =

√
h̄k2/2Mν is the Lamb–Dicke parameter. The Rabi

oscillation frequencies for the blue and red sideband transitions
were set to the same value �̃ and to � for the carrier transition.

When only the carrier coupling is applied, with the
appropriate choice of the phase φ, one obtains

Hσj
= h̄�jσj (72)

with j = {x, y} and σj being the Pauli matrices.
When the blue and red sideband couplings are used

simultaneously, the resulting Hamiltonian is the sum of Hr

and Hb from equation (71). By choosing the phases of the
sideband fields such as φb − φr = π , one obtains

H
p
σj

= ±ih̄η��̃σj (a − a†). (73)

Here, � = √
h̄/2Mν is the spread in the position of the

ground wavefunction. The operator σj is the Pauli matrix
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Figure 14. The selection of the phases of the red and blue sideband
φr and φb fields are important since they shape the form of the
Hamiltonian. In particular, the sum of the phases φs = (φr + φb)/2
defines the direction of the spin operator and also the global sign of
the Hamiltonian (73).

along the j = {x, y} component of the spin. It is not related
to the vibrational directions of motion but to the ionic internal
transitions.

The selection of the Pauli matrix σx = σ + + σ− or
σy = i(σ− − σ +) as well as the sign of the Hamiltonian is
performed by an additional condition of the applied red and
blue sideband phases. Even if a condition on their difference
was already used, one needs a supplementary condition to
completely define the phases. The sum of the phases of the
applied fields φs = (φb + φr)/2 determines the sign of the
Hamiltonian, negative for φs = {π, 3/2π} and positive for
φs = {0, 1/2π}, whereas the Pauli matrix σj is selected along
j = x for φs = {0, π} and along j = y for φs = {π/2, 3/2π}
(see figure 14). The phase φs itself does not modify the
dynamics of the system when the previous Hamiltonian is
considered alone, but it is essential to build the Dirac-like
Hamiltonian composed of many element couplings as in
equation (73). The dynamics of equation (73) are based on a
spin-dependent coupling between the internal and vibrational
states that can also be used for the creation of entangled states
of spin and motion. This coupling has already been applied in
previous experiments (Haljan et al 2005, Sackett et al 2000).

The Hamiltonian of equation (73) constitutes the basic
block to construct the Dirac Hamiltonian in (3+1) dimensions.
Since the spin-1/2 particle to simulate has a momentum
with components in all three spatial directions, one needs
to consider Hamiltonian terms along all of these directions.
The operators a† and a can be associated with the three
normal trap frequencies and therefore with the motion along
the three trap axes. One needs to distinguish a

†
� and a� for

every axis � = x, y, z. The same consideration should be
made for the Lamb–Dicke parameter η�, the spread in the
position of the ground-state wavefunction �� and the Rabi
frequency �� that also needs to be defined along the direction
of the applied interaction. The difference between the creation
and annihilation operators can be written in terms of the
momentum operator p� = ih̄

(
a
†
� − a�

)/
��. Following the

previous considerations, the Hamiltionian of equation (73)
can be rewritten as

H
p�
σj

= 2η����̃�σjp�. (74)

In order to simulate the Dirac dynamics employing four
internal states of an ion, the transitions |a〉 ↔ |c〉 , |a〉 ↔
|d〉 , |b〉 ↔ |c〉 and |b〉 ↔ |d〉 are employed. The

corresponding spin-1/2 operators of equation (74) need
to be defined for the specific transition σac

j , σ ad
j , σ bc

j and
σbd

j , and therefore the corresponding Hamiltonians from
equation (74) can be written as H

p�

σj (ac), H
p�

σj (ad), H
p�

σj (bc) and

H
p�

σj (bd). In the case of the carrier interaction of equation (72)
two internal transitions are used, giving the following
Hamiltonians Hσ�(ac) and Hσ�(bd).

With the correct selection of the direction and phase for
the different fields, one can tailor the desired Hamiltonian as
a linear combination of Hσ�

and H
p�
σj

yielding, for instance
(Lamata et al 2007),

HD = H
px

σx(ad) + H
px

σx(bc) + H
py

σy(ad) − H
py

σy(bc)

+ H
pz

σx(ac) − H
pz

σx(bd) + Hσy(ac) + Hσy(bd). (75)

It should be noted that all the Rabi oscillation frequencies
for the sideband and carrier transitions �̃ and �, the spread
in position � and the Lamb–Dicke parameter η are selected
equal in all the components of the previous Hamiltonian for
reasons that will be explained later. This means that the
fields employed to drive the various couplings should have
the same relative strength for all the directions of space, and
the ion trap should be spherical. Therefore, one may obtain a
Hamiltonian HD that is symmetric with respect to all directions
of space. The Hamiltonian HD can be written in a 4×4 matrix
representation in a base defined by the four internal states of
the ion (see equation (70)):

HD =
(

0 2η��̃(�σ · �p) − ih̄�

2η��̃(�σ · �p) + ih̄� 0

)
, (76)

where each element represents a 2 × 2 matrix. This
Hamiltonian can be compared with the ‘supersymmetric’
representation of the Dirac Hamiltonian (Thaller 1992),

HD =
(

0 c(�σ · �p) − imc2

c(�σ · �p) + imc2 0

)
. (77)

The speed of light c and the electron rest energy mc2 are related
to the coupling strengths � and �̃ following

c = 2η��̃ and mc2 = h̄�. (78)

The previous selection of symmetric couplings applied
along all the directions of space represents in a simulation the
isotropy of the velocity of light.

One can recognize the similarities between these two
Hamiltonians, making possible the simulation of a quantum
relativistic evolution of a spin-1/2 particle with an ion-trap
experiment.

If the dynamics created by the Hamiltonian of
equation (76) were reproduced in an experiment with a four-
level system using Raman beams, it would require 14 pairs
of Raman lasers, two for each element of the form H

p�
σj

(see equation (74)) and one for each carrier element Hσ�

(see equation (72)). Of course, some simplifications can
be applied, such as modulating the frequency of the beams
to generate the blue and the red sideband transitions with a
single pair of beams. But the need of controlling their phases
independently and the minimal requirement of having at least
two pairs of beams (modulated in frequency) with a resulting
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Figure 15. Possible laser configuration to build the Dirac
Hamiltonian with Raman transitions. In order to build a symmetric
Hamiltonian such as that of equation (76), the wave vectors must be
the same along the three trap axes. For simplification of the lasers
requirements, only one wavelength can be used. Then the four levels
to perform the simulation need to be close enough in energy, i.e. two
Zeeman split hyperfine levels as proposed in Lamata et al (2007).
Therefore, the angles subtended by every pair of Raman beams must
be the same. Additionally, the beams need to be modulated with the
correct frequency to drive the desired transitions.

k-vector along each one of the trap axes should be stressed (see
figure 15).

In order to render the simulation achievable with
current experiments, one can simplify the (3+1)-dimensional
Hamiltonian of equation (77) and work with (2+1) dimensions
(Bermudez et al 2007) or simplify even more to (1+1)
dimensions that still reproduce the most important effects
of the Dirac equation. The resulting (1+1)-dimensional
Hamiltonian becomes, after a π/2 rotation around the x-axis
that changes σy into σz (Lamata et al 2007),

H
(1)
D = 2η��̃σxpx + h̄�σz. (79)

This Hamiltonian operates on the Dirac ‘spinor’ |�(1)〉 =
�(1)

a |a〉 + �
(1)
b |b〉 built with a positive

(
�(1)

a

)
and a negative(

�
(1)
b

)
kinetic energy component (Thaller 1992). The term

2η��̃σxpx results from the application of blue and red
sideband fields. It is just the sum of Hb and Hr with phases
φb = −π/2 and φr = π/2. The last term h̄�σz can be
obtained, for instance, by applying an off-resonant laser pulse
that induces an ac-Stark shift. Because of the reduction
to one spatial dimension, the trapping potential should also
be one dimensional, that is, a linear trap with strong radial
confinement compared to the axial one would be well suited.

The experimental requirements for simulating the (1 + 1)

Dirac Hamiltonian are substantially reduced and achievable in
current experiments.

6.4.2. Experiment for the simulation of the Zitterbewegung.
By numerically solving the Dirac equation, it is possible to
visualize the peculiar behaviour of the probability density
function. One of these peculiarities is the Zitterbewegung
where the position of a particle oscillates even in the absence
of external potentials. Usually, this relativistic effect is not
seen in experiments since the frequency is on the order 1021

Hz and the amplitude on order 10−3 Å for a real particle such
as an electron.

When simulating the Zitterbewegung with trapped ions,
the frequency and amplitude of the oscillatory motion for an

ion with average momentum p0 are given by Lamata et al
(2007):

ωZB ≈
√

2η2�̃2p2
0

/
h̄2 + �2, (80)

RZB = ηh̄2�̃��

4η2�̃2�2p2
0 + h̄2�2

. (81)

From equation (80), one can obtain a measurable output
with frequencies ranging from zero to some megahertz and
amplitudes that can go to a thousand Angstroms varying the
typical parameters of Rabi frequencies and trap depths. It can
be noted that the amplitude of the Zitterbewegung can be made
independent of the Rabi frequencies if η�̃ ≈ � indicating that
this effect could even be seen with small laser fields.

In order to observe the Zitterbewegung, one needs to
determine the momentum and the position of the ion for
different times. In previous experiments (Meekhof et al 1996a,
1996b), the state of motion of the ion was determined by
measuring the population distribution of the Fock states. From
the red sideband excitation probability as a function of time,
one can fit the different frequency components associated with
the contribution of every vibrational level. Therefore, the
determination of the distribution over Fock vibrational states
requires many data points. Another possibility could be to
measure the Wigner function by instantaneous measurements,
even in the presence of a thermal bath, based on the proposal
in Santos et al (2007).

To reduce the number of data points to acquire, one can
just measure the expected value of the generalized quadrature
Yφ = (ae−iφ−a†eiφ)/2 as proposed by Lougovski et al (2006).
Indeed one does not need to measure the whole wavefunction
to know the position or momentum of the ion; it is enough
to measure the expected value. The angle φ is related to
the internal spin state |+φ〉 = (|a〉 + eiφ|b〉) where the ion is
initialized. Additionally, a JC interaction needs to be applied
(see Hr in equation (71)) which couples the vibrational state
to the internal state where the measurement is performed.

The probability Pb of finding the ion in the state |b〉 is
given by (see Bastin et al 2006)

d

dt
Pb = 1

ih̄
〈[|b〉 〈b| ,H0 + Hr]〉 +

〈
∂

∂t
|b〉 〈b|

〉

= 1

ih̄
〈[|b〉 ,Hr]〉. (82)

The state of the ion at time t = t0 is given by ρm(t0)⊗
∣∣+φ

〉 〈
+φ

∣∣,
where ρm is the density matrix for the vibrational levels. Then
the probability of finding the ion in state |b〉 at time t = t0 is
given by

d

dt
Pb

∣∣∣∣
t=t0

= 1

ih̄
〈[|b〉 〈b|,Hr]〉|t=t0

= Tr
[
ρm(t0) ⊗ |+φ〉〈+φ|[|b〉 〈b|,Hr]

]
= η�̃〈Yφ〉. (83)

Therefore, the generalized quadrature can be written in
dimensionless time τ = η�̃t as

〈Yφ〉 = d

dτ
P

+φ

b

∣∣∣∣
τ=0

. (84)

24



J. Phys. B: At. Mol. Opt. Phys. 42 (2009) 154009 Review

When choosing φ = −π/2 and φ = 0 the position and
momentum operators are measured, respectively. Note that
only two measurements of the probability of finding the ion
in state |b〉 are needed to be taken to determine the position or
momentum of the ion.

In order to perform the simulation of the Zitterbewegung
the ion can be cooled to the vibrational ground level, although
it is not required, since it is also possible to measure the
Zitterbewegung of a Doppler-cooled ion. Then the internal
state of the ion is set to |a〉. The next step is to excite the
ion to a given motional state, i.e. a Fock state (Meekhof
et al 1996a, 1996b), a coherent state (Carruthers and Nieto
1965), a thermal state (Stenholm 1986), a squeezed state
(Heinzen and Wineland 1990, Cirac et al 1993) or an arbitrary
state. The relativistic-like dynamic ruled by the interaction
HD (see equation (79)) is generated by turning on the fields
resonant with the blue and red sidebands at time t = 0.
The time evolution of the ion ends at t = t0 when the
interaction generated by the Hamiltonian HD is turned off.
Simultaneously, the internal state of the ion is driven to |+φ〉
by the application of an external field; then a JC coupling
(see Hr in equation (71)) is applied to map the ion motional
state into its internal state. At time t = t0 + τ with
τ � 2π/ωZB, the population in the level |b〉 is measured
by detecting resonance fluorescence. The previous sequence
is repeated with the same parameters for a given number of
repetitions to find the probability P

+φ

b (t0 + τ). Then, the
probability P

+φ

b at t = t0 is also measured (without the need
of applying the JC coupling). From the two last probabilities,
the expectation of the generalized quadrature can be deduced.
The whole sequence is then repeated for different t to extract
the trajectory of the ion.

6.4.3. Experiment of the simulation of the Klein paradox.
The Klein paradox (Klein 1929) is a relativistic effect
described by the Dirac equation. It states that an electron can
be transmitted with almost no reflection through a potential
step with a height V bigger than twice the electron rest energy
mc2.

In the Dirac formalism, the particle kinetic energy E
takes into account the rest mass and therefore the electron
momentum is given by

p = 1

c

√
(E − V )2 − m2c4. (85)

When |E − V | < mc2, the momentum is imaginary and
the wavefunction exponentially decays. However, when
V � E + mc2, the momentum is real and one obtains a
transmitted wave. This solution lies in the negative kinetic
energy range E < −mc2 + V and is therefore associated
with electron–positron pair production. The positron sees an
inverted potential step and therefore its motion is not impeded
(see figure 16).

The transmission through a potential step can be
reproduced by the Hamiltonian,

H
(1)
V = H

(1)
D + V (|a〉 〈a| + |b〉 〈b|). (86)

The last term is the potential step V (|a〉 〈a|+ |b〉 〈b|) that is set
at time t = t0. It can be implemented for example by the use

Figure 16. Potential step (thick line). The white areas represent the
forbidden regions where the solutions of the Dirac equation are
exponentially decaying. The light and dark gray areas correspond to
the positive and negative energy regions respectively. An electron
with energy mc2 < E < V − mc2 is found initially in the positive
energy region. For t > t0, after the potential step, the energy lies in
the negative energy region allowing the creation of a hole in the
Dirac sea. Picture adapted from Schwabl (1997).

of a detuned laser that produces the same Stark shift in both
levels.

The experimental protocol is summarized in the following
steps. First, the ions are cooled to the ground state |a〉. Then
the JC and AJC couplings, described in equation (79), are
applied at t = 0 by turning on the red and blue sideband
excitation fields. Next, the potential step is turned rapidly on
at time t = t0. Last, the population in the state |b〉 is measured
by fluorescence. The probability of finding the ion in the state
|b〉 is obtained after several repetitions and is equivalent to the
transmission probability through the step potential.
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